(Based on Boyce-di Pirima 10th ed.).

autonomous

Canonical Forms and Solutions.

P(t) y' + Q(t) y = C(t) * if it's in the above form, you have to rewrite it in the below form first. $y = \frac{1}{\mu(t)} \int \mu(s)g(s) ds + C$ F.O. L. (2.1)(general) (Integrating factor) $\mu(t) = e^{\int P \times \text{Note:}} \text{ the exponent is } \Phi!!$ in the course, but the for the Wronskian of a s.o.e. oot. y' + p(t)y = g(t)M(x) dx + N(y) dy = 0F.O., n.n.L; $\int M dx + \int N dy = c$ 2.2) * it usually won't be in this form;
you have to rearrange it into this format
to determine it it's seperable seperable $(2+ :=) \int_{\mathbb{R}} M \, dx + \int_{\mathbb{R}} \left[N - \partial_{y} \int_{\mathbb{R}} M \, dx \right] \, dy = C$ (2.6)M(x,y) dx + N(x,y) dy = 0F.O., n.n.L; and $M_y = N_x$ exact * note: When doing IM dx, [gnore] the first y only that arises as the "constant" of integration.

(The second integral doesn't have this problem blc, it's a first y only) F.O., n.n.L; M(x,y) dx + N(x,y) dy = 0Solved w integrating factors. See Addendum 1 (2.6)for how to [find an integrating factor. Once n.n. exact (but $M_y \neq N_x$) found, thre's no general formula for the solin of the ODE in terms of just multiply through by μ and then solve the resulting exact equ. (as detailed on the prev. line) F.O., n.n. L; y' = f(y)(2.5)(We only analyze the qualitatively I graphically)

S.O.L;	ay'' + by' + cy = 0	Solú depends on roots of char poly: (Ch.3)
	ory by toy	- 5110 Capatiles 51. 1 5515 51. 1511
C.C. + homog		$y = c_1 e^{r_1 t} + c_2 e^{r_2 t}$ (3.1)
		$Y = c_1 e^{rt} + c_2 t e^{rt} \tag{3.4}$
		$y = e^{\lambda t} \left[c_i \cos(\mu t) + c_2 \sin(\mu t) \right] $ (3.3)
ĈO.	" (C() , ' + (b) y = 0	Reduction of Order (3.4)
	y'' + p(t)y' + q(t)y = 0	REGULATOR OF CIGE
N.C.C + homog.		III some soln y, is known, thun the other soln is
manus antiques encourant entire (Brightine resugning and in a consideration desired		(Doposkian)
er menteringssähnna men in Commingnisch der ein werden der mit met fichtigegen dem gegen.		$ y_2 = y_1 \int \frac{w}{y_1^2} \Rightarrow (w \cos skian) \\ = y_1 y_2' + y_1' y_2 = ceIP $ 4 Abel's Hun
and the same of the same and the same of t		
as a disclosed about a gravitating of the first to earlier among an expension of the produce front first a disclosed from the first and the first firs		(the first solin is other determined by guessing or some other insight)
5.0.L;	* literally any S.O.L ODE *	Variation of Parameters (3.6)
inhomog.		
(coeff irrel.)		$y = y_c + -y_1 \int \frac{y_2 q}{w} + y_2 \int \frac{y_1 q}{w}$
		solin to corresp. * y, and y2 are fund. solins
Registration was being judger one accurate and a sector and the se		homag. egn. to the corresp. homag. egn.
	IF (i) the ODE has const. coeff.	[Undetermined Coefficients] (3.5)
	(ii) of has a special form,	Guess a padicular soln (see Addendum 2 for the guesses) based
	sums/products of exp.,	on the inhomog term g. Determine coeffs and thun add yp to ye, the solin to the corresp. homog. egin.
	pdy's, and sin floos.	to ye, the solin to the corresp. homog. egh.

H.O.L;	$a_{n}y^{(n)} + \cdots + a_{1}y' + a_{0}y = 0$	Solú depends on roots of char. poly: (4.2)
CC. + homog.		
9		· Each distinct (real) rook contributes cent
Experience (specimens) are an experience or the experience of the		· Each complex (conj) pair contributes ext (c,cos(pet)+czsin(ut))
		· for rooks in multiplicity, additional solus are obtained
		by multiplying the "base" solin by increasingly higher powers of t (eg. tert, tert, tert, etc.)
		d t (eg. te, te, te, ere.)
1101	- (1) (n) + + 0 (1) 2 4 0 (4) 4 - 0	We don't do these ble the best you can do is determine
	$p_n(t) y^{(n)} + \cdots + p_n(t) y' + p_o(t) y = 0$	Il. lock hund som it you already know the other (n-1)
N.C.C + homog		the last hund. som it you already know the other (n-1). ((this is reduction of order)).
H.O.L;	$(a_n y^{(n)} + + a_1 y' + a_0 y = g(t))$	Variation of Parameters (4.4)
inhomog.	() ()	Signed winor or whoskian
(coeffs. irrel.)		$y = y_c + \sum_{i=1}^{N} \frac{q(w_i)}{w_{n_i}} \frac{\text{matrix associated is the row,}}{ w_{n_i} }$
4 but in practice		1=1 0 (00)
ours will always be C.C. Since		solin to correp. Wronskian will home ear. * * For cc. the wronskian will
you still need to		homog. eqn. just be e (an-1/an)t (by Abel's flum)
fund. Solvis VO	(uhlike \$ 50.L' equ's) Plus is 7 a given for us when dealing \$ HO.L.	(by Agels Hum)
ili homog.		Undetermined Coefficients (4.3)
	If (i) the ODE has const coeff	[Undetermined Coefficients] (4.3) Exactly the same as the process for solving an (amenable) S.O.L.
	(ii) g has a special form	Exactly to same as the bigges not solving attractiones.
All the stage and all the state of the state	Same as for SOL: Sums/products of exp.,	
	Poly's, and sin/cos.	

	$\underline{X}' = \underline{A}\underline{X}$	Sol'n depends on the spectrum of A (7.5, 7.6, 7.8)
C.C. + homag.		· For 2x2 systems, see the Phase Portrait summary.
		· For higher-dim'l systems, things become really complicated if the are eigenvalues to high algebraic multiplicity but low geometric multiplicity.
		low geometric multiplicity.
		4 Eigenvalues of alg. mult. 3 are treated in exercises 18 and 19 on p. 438 4 We don't cover eigenvalues of higher multiplicity.
		4 We don't cover eigenvalues of higher multiplicity.
F.O.L. system; N.C.C.+ homog.	$\underline{x}' = P(t)\underline{x}$	We don't cover this case. fund, matrices are $7 = e^{\int P(t)}$ Special I hand matrix is $\Phi(t) = e^{\int t_0} P(t)$ The (tope;) for $\chi^{(i)}$
	X' = P(t)x + g(t)	[Variation of Parameters] (7.9)
inhomog. (coeffs. irrel.) Is but in practice ours will always	$(\underline{X}' = \underline{A}\underline{X} + \underline{g}(\underline{t}))$	$X = (4(t) \cdot c) + 4(t) (3) \cdot 9(s) ds$
be C.C. since you shill need to know the solin to the homeg.		solin to corresp. homog. egin (xc) * 2(t) is [any] fund. matrix for the corresponding homog. egin *
3		The solin to the IVP through (t_0, x°) can be obtained by integraling from t_0 to t and taking $c^\circ = 7(t_0)^{-1} \cdot x^\circ$

(F.O.L. system; inhomog [continued])	
(x1 - D(L)x + a(L))	
$\left(X^{1} = P(t)X + g(t)\right)$	
IF the system has const. coeff.)	Diagonalization (7.9)
P(t) is a const.	
malrix A	Changing coords to $y = Px$, where P^-AP diagonalizes A,
	the system becomes:
	V' - D V + P-1 - (4)
	$\chi' = D_A \chi + P^{-1} g(t).$
	This is just a set of uncoupled F.O.L. ODES:
	$\{y_i' = \lambda_i y_i + (i^{i\alpha} comp. of P^{-i}g)$
(like & HDL single equations), this is	Solving as normal, we knn have $X = P^{-1}Y$
(like & HDL single equations) this is a given for us when dealing with supplicus.	solving as violinal, we real viace $\underline{\Lambda} = 1$
IF (i) the system has const. coeff.)	Undetermined Coefficients (7.9)
(ii) g has a special Corm	

(Bused on Tennerbaum + Pollard).

Sept. 23rd, 2019.

Addendum 1 Integrating Factor Summary.

1. Integrating fractors are applicable to equis of the form: P(x,y) dx + Q(x,y) dy = 0.

2. There are Cive types to search Cor Cirst:

Function of	Auxilary Fn (F)	Integrating bucher (h)
x only	$\frac{P_{y}-Q_{x}}{Q}$	e SF(x) dx
y only	Qx - Py	es F(x) dy
хү	$\frac{P_{y}-Q_{x}}{yQ-xP}$	ele(xx) q(xx)
×/y	$\frac{y^{2}(P_{y}-Q_{x})}{xP-yQ}$	es F(xy)d(xy)
y/x	$\frac{x^2(Q_x - P_y)}{xP - yQ}$	e SF(Y/x) d(Y/x).

3. The solution to the original egn. is the same as the solution to the "augmented" egn. (i.e. the equation that you get after multiplying through by the integrating factor).

4. The Camily of solutions is f(x,y) = c, where f is the primitive of the Com Pdx+Qdy. Helroy

(based on Table 3.5.1 on p. 182 of Boyce di Prima) Addendum 2.

Ansatz for Undetermined Coeffs.

١.	Check	llacat	a(t)	is	a.	sum	ol	terms	oh	He	Corm	
	971001	102.	70.					**	nole: e	each t	fern ol	g(t) may
		ext	Pn(t	5)(c	55(/	3t) / s	sin (B	t)) (con	rain e	only lov	e of si	g(t) may n and cos contain th
			,,					(but	der	enr re	ns may	Convain roc

2. The component of yp corresponding to each term in g(t) is determined separately.

The ansatz are:

ext	ctsext
Pn(t)	ts Qn(t)
cos(pt) / sin(pt)	$t^{s}\left[c_{1}\cos(\beta t)+c_{2}\sin(\beta t)\right]$
$e^{xt} P_n(t)$	ts Qn(t) ext
ext cos(Bt) (sin (Bt)	ts ext [c, cos(Bt) + c, sin(Bt)]
Pn(t) cos(pt) sin(pt)	$t^{s} \left[Q_{n}(t) \cos(\beta t) + \widehat{Q}_{n}(t) \sin(\beta t) \right]$
eat Pn(t) cos(Bt) / Sin (Bt)	to ext [Qn(t) cov(pt) + Qn(t) sin(pt)]
Ly this one basically subsumes all A	

Note 1: although each term of g(t) may only ever contain cos tool sin, the corresponding ansatz always contains [both]

Note 2: The factor "ts" is present to ensure that the ansatz is linearly independent from the fund. solvis to the homog. egin. Choose s as small as possible (s=0 is ok) to make that the case.

Addendum 1: Improper Node (96)

Consider the case where $\lambda = 0$ (x2). As long as thress only one eigenvector, this case isn't thotally degenerate. ((if it has two L.I. eigenvectors then the matrix is the zero matrix)).

For example, take $A = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$, which has $x = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ and $x = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

Notice that every matrix falling into this category (\(\lambda = 0 \) (x2), deficient) has As as its Jordan Canonical Form.

Hence the phase portrait of every such matrix is just to the one of Ao under a change-of-coord.

As can be undershood who writing down the general solin explicity.

Note that $\dot{X} = A_0 X$ is just $\begin{cases} X' = Y \\ Y' = 0 \end{cases}$.

- · y'= 0 tells us that soln curves are purely horizontal
- · x'=y tells us that the direction (and speed) that the trajectories are traversed depends on their height.
- · equilibrium points are the entire x-axis ((y=0)).

To find out exactly how anothr given system of this type looks, you de have to write down the general soln:

 $(c_1 + c_2 t) \frac{3}{4} + c_2 \frac{7}{4}$ determines red line

Adendum 2: Direction of Robation (For (6+6)

Any matrix to complex (conj) EV's $\lambda \pm \mu i$ is similar to the example canonical form $\Delta \mu \lambda$.

In polar coords, the system $\dot{x} = Ax$ has solve $\dot{x} = Ax$ has $\dot{x} = Ax$ has $\dot{x} = Ax$ thence $\dot{x} = \dot{x} =$

Hibrory

Examples of matrices ho	or each case
-------------------------	--------------

$$\begin{pmatrix}
4b - & 0 & 1 \\
degenerate & 0 & 0
\end{pmatrix}$$

$$\lambda = 0 (x2) \quad 3 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad 4 = \begin{bmatrix} x \\ 1 \end{bmatrix}$$

Hibrory

Fill in the rest and add arrows according to sgn (2).

Nonlinear F.O. systems (9.2)

- Just like we were able to Freak Certain Non-linear

Firstst-order single equations, those that are autonomous

we can also treat certain nonliner F.O. systems, by drawing phase portraits.

- Notice that the classification axes "const/nonconst. coeff" and "homog/inhomog." are absent from the above discussion.
 - · In a nonlinear context, the concept of a coefficient doesn't even really exist
 - In a nonlinear context, homogeneity is pretty much irrelevant.

 In the linear context, the point of the distinction is that
 the homog. is easy to solve, and then we can pull the
 solin of the inhomog. out of the solin to the homog.

 In the nonlinear case, there's often no such piggy-badding,
 so the distinction is iccelerant.
 - 4 Consider (X+1)(x-2)=6 vs. (X+1)(x-2)=0; knowing the solving to the latter ((homog.)) does nothing toward solving the General (inhomog.)); we just have to re-solve it in full.
- Also, just like to linear systems, we only do the 2x2 case since that's all that we can draw.

Hilroy

9.3 - Local lineurization of certain FOA 2×2 systems.

- Stability of equation X'= Ax wher perharbation of coeffs

All characles of systems are stable under small perhabitions of A [except] spiral points and nodes.

The two exceptions are unstable ble they correspond to bifurculions already (recall what the eigenvalue) cause them), so a parturbation of A will hip the scale one way or per other.

Lineurization: @ x°

1. change to U:= X -x° so that crit pt. is @ origin.

2. Sevech for A, g s.t. An f(M) = Au + g(u).

a) Try the suff. cond. below.

b) find A by taking linear terms of linear approx. error.

(Nant 11911/11111 > 0)

(Nant 11911/11111 > 0)

(Nant 11911/11111 > 0)

invertible (add some linear terms, and 127 31/2 92/2 > 0,

len subtract flum again; absorberror

inho g). See Ex. 2 on p. 521 d To check this, it's helpful 13 DP.

to write g, gz in pobr

Sufficient. Mycessucy condition: F, Cr are C2 near x°.

Then: U = Df(u) + 2(u)Series Cor F, C.

(ni/ra >0.)

form.