(Based on Boyce-di Primal $10^{\text {th }}$ ed.).
Canonical Forms and Solutions.

F.O., n.n.L; $M(x, y) d x+N(x, y) d y=0$ n.n. exact $\quad\left(\right.$ but $\left.M_{y} \neq N_{x}\right)$

Solved w integrating factors. See Addendum 1
for how to find an integrating factor. Once found, there's no general formula for th solin of th ODE in terms of μ; just multiply thraigh by μ and then solve the resulting exact equ. (as detailed on the prev. line)

$$
\text { F.O., } n . n, L ; y^{\prime}=f(y)
$$

autonomous

F.O.L. system; $\quad \underline{x}^{\prime}=A \underline{x}$
C.C. + homog.
F.O.L. system; $\underline{x}^{\prime}=P(t) \underline{x}$
N.C.C. + homer.
F.O.L. system; $X^{\prime}=P(t) x+g(t)$

Sol'n depends on the spectrum of $A \quad(7.5,7.6,7.8)$

- For 2×2 systems, see the Phase Portrait summary.
- For higher-dim'l systems, things become really complicated if the are eigenvalues \bar{w} high algebraic multiplicity but low geometric multiplicity.
"Eigenvalues of alg. mull. 3 are treated in exercises 18 and 19 on p. 438
4 We dort cover eigenvalues of higher multiplicity.
We don't cover this case. fund matrices are $\psi=e^{e}$ special l hud matrix is $\phi(t)=e^{\int_{t_{0}}^{t} P(t)}$ $\zeta I c .\left(t_{0,}, e_{i}\right)$ for $\underline{x}^{(i)}$.
Variation of Parameters

The solid to th IVP though $\left(t_{0}, x^{0}\right)$ can be obtained by integrating from t_{0} to t and taking $\underline{c}^{0}=\psi\left(t_{0}\right)^{-1} \cdot x^{0}$
(F.O.L. System; inhomog continued)

$$
\left(\underline{x}^{1}=p(t) x+g(t)\right)
$$

If th system has constr. coeff.
$P(t)$ is a constr. matrix A

Dagon alization
Changing coords to $y=P_{\underline{x}}$, where $P^{-1} A P$ diagonalizes A, the system becomes:

$$
y^{\prime}=D_{A} \nsucc+P^{-1} g(t)
$$

This is just a set of uncoupled F.O.L. ODE's:

$$
\left\{y_{i}^{\prime}=\lambda_{i} y_{i}+\left(i^{\mu} \text { comp. of } p^{-1} g\right)\right.
$$

Solving as normal, we the have $\underline{x}=P^{-1} \not \neq$
Undetermined Coefficients
(ii) g has a special form
(Bused on Tenner baum + Pollard)
Addendum 1
Integrating Fachor Summary.
1 Integrating factors ane applicable to equ's of the form:

$$
P(x, y) d x+Q(x, y) d y=0
$$

2. There are live types to search for first:

Function ob...	Auxilary fra	Integrating factor (h)
x only	$\frac{P y-Q_{x}}{Q}$	$e^{\int F(x) d x}$
y only	$\frac{Q_{x}-P y}{P}$	$e^{\int F(y) d y}$
$x y$	$\frac{P_{y}-Q x}{y Q-x P}$	$e^{\int F(x y) d(x y)}$
x / y	$\frac{y^{2}\left(P_{y}-Q_{x}\right)}{x P-y Q}$	$e^{\int F(x / y) d(\underline{\underline{x}})}$
y / x	$\frac{x^{2}\left(Q_{x}-P_{y}\right)}{x P-y Q}$	$e^{\int F(y / x) d(\underline{x})}$

3. The solution to th original eqn. is th same as th solution to th "augmented" "eqn. (ie. the equation that you get after multiplying through t by the integrating factor).
4. The Family of solutions is $f(x, y)=c$, where f is the primitive oh th Corm $P d x+Q d y$.
(based on Table 3,5.1 on p. 182 of Boyce- di Primal)
Addendum 2.
Ansatz for Undetermined Coeffs.
5. Check that $g(t)$ is a sum of terms oh the form
6. The component of y_{p} corresponding to each term in $g(t)$ is determined separably.
The ausatz are:

$$
\begin{array}{l|l}
e^{\alpha t} & c t^{s} e^{\alpha t} \\
P_{n}(t) & t^{s} Q_{n}(t) \\
\cos (\beta t) \| \sin (\beta t) & t^{s}\left[c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right] \\
e^{\alpha t} P_{n}(t) & t^{s} Q_{n}(t) e^{\alpha t} \\
e^{\alpha t} \cos (\beta t) \| \sin (\beta t) & t^{s} e^{\alpha t}\left[c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right] \\
P_{n}(t) \cos (\beta t) \| \sin (\beta t) & t^{s}\left[Q_{n}(t) \cos (\beta t)+\widetilde{Q}_{n}(t) \sin (\beta t)\right] \\
\hline e^{\alpha t} P_{n}(t) \cos (\beta t) \| \sin (\beta t) & t^{s} e^{\alpha t}\left[Q_{n}(t) \cos (\beta t)+\widetilde{Q}_{n}(t) \sin (\beta t)\right] \\
\hline
\end{array}
$$

\rightarrow this one basically subsumes all the otters (just omit appropriate factors)
Note 1: although each term of $g(t)$ may only ever contain cos \sin, the corresponding ansate always contains both
Note 2: The factor " t " is present to ensure that the ansate is linearly independent from th Gund solvis to th homog. eqin. Choose s as small as possible ($s=0$ is ok) to make that th case.

Phase Portraits - Homog. 2×2 F.O.L. syslems iv const. coeffs. ((real))
(1) EUs real and dishinct, opposite signs. \rightarrow saddle pt. © 0

- always unstrable.

$$
\underline{x}=c_{1} e^{\lambda_{1} t_{\varepsilon_{1}}}+c_{2} e^{\lambda_{2} t} \xi_{2}
$$

$$
x=c_{0} \hat{\varepsilon}_{0}+c_{\lambda} e^{\lambda t \tilde{c}_{\lambda}}
$$

(3) EVs real and dislinct, same sign

$$
\left.\rightarrow \text { crit. line (fracugh } O \text { and } \frac{\xi}{\xi}\right) \text {) }
$$

$$
\underline{x}=c_{1} e^{\lambda_{t} t} \tilde{E}_{1}+c_{2} e^{\lambda_{2} t} \xi_{t_{2}} \rightarrow \text { same ex asession }
$$

Bifuralion (4) Ore real EV a mult. 2
[4a] \rightarrow mahrix is nol delechive (ie. twol IT. EV's) \rightarrow Star-node @ ©
[4b] $\left\llcorner\right.$ matrix is delective (only one erigntuedor) $\lambda_{1}=\lambda_{2} \rightarrow$ improper node @O

$$
\underline{x}=\left(c_{1}+c_{2} t\right) e^{\lambda t} \underline{z}+c_{2} e^{\lambda t} \text { z } \rightarrow \text { is the eigenvechos and }
$$

(5) EVS complex $\left(\right.$ conj)), $R_{e} \neq 0$
\rightarrow spiral poinf @ 0

$$
\begin{aligned}
& \underline{x}=e^{\lambda t}\left[c_{1} \cos (\mu t)+c_{2} \sin (\mu t)\right] \underline{a}+e^{\lambda t}\left[c_{2} \cos (\mu t)-s_{1} \sin (\mu t)\right] \underline{b}
\end{aligned}
$$

 stable spiral

$$
x=\left(\text { same as (5) but wo } e^{\lambda t}\right. \text { in Cront) }
$$

Prototypical Phase portraits.

\qquad
(1) Saddle point

(2) (\#no formal name)) 4 Pis is a degenerate cove
(4a) Star node Teanhicilly (Hb) Improper node Sta

(3) Proper node.

(5) Spiral point For bolt of these cases, there are no distinguished sols's. To determine the direction of robation, look es the imuaninery put.

(6) Centre

Addendum 1: Improper Node (Ab)
Consider the case where $\lambda=0(\times 2)$. As long as tlvés only one eigenvedor, this case is nit botally, degenerate.
((it it has two L.I. eigenvedors then the matrix is th zero matrix)) For example, rake $A_{0}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$, which has $\xi=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\eta=\left[\begin{array}{c}x \\ 1\end{array}\right]$.

Notice that every maknix falling into this category $(\lambda=0(\times 2)$, deficient) has A_{0} as its Jordan Canonical Form.

Hence th phase portrait of every such matrix is just the one of A_{0} under a change-ol-coord.

Ago can be understood wo writing down the general solon explicity.
Note that $\dot{x}=A_{0} \underline{x}$ is just $\left\{\begin{array}{l}x^{\prime}=y \\ y^{\prime}=0 .\end{array}\right.$

- $y^{\prime}=0$ tells us that solon curves are purely horizontal
- $x^{\prime}=y$ tell's us that the direction (and speed) that th trajectories are traversed depends on their height.
- equilibrium points are thentire x-axis $((y=0))$.

To find out exactly how anole given system owl this type looks, you do have to write down the general son:

$$
\left(c_{1}+c_{2} t\right) \underbrace{\sum \sum}_{\text {delemines red line }}+c_{2} \eta
$$

Adendum 2: Direction \& Rotation ($\operatorname{for}($ ($)+($ (B) $)$
Any matrix is complex (conj) EV's $\lambda \pm \mu i$ is similar to th 2×2 real canonical form $\left[\begin{array}{cc}\lambda & \mu \\ -\mu & \lambda\end{array}\right]$
In polar coords, the system $\underline{\dot{x}}=A \underline{x}$ has solus $\left\{\begin{array}{l}r=r_{0} e^{1 t} \\ \theta=\theta_{0}-\mu t\end{array}\right.$ Hence

$$
\begin{aligned}
& \mu=\oplus \Rightarrow \theta \text { decreases } \Rightarrow C \omega \text { rotation } \\
& \mu=\theta \Rightarrow \theta \text { increases } \Rightarrow \infty \omega \text { rotation. }
\end{aligned}
$$

Examples of mahices for each case.
(1) []
(2) []
(3) []
(4a) []
(46) []
deygerave $\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right] \quad \lambda=0\left(x_{2}\right) \quad \xi=\left[\begin{array}{l}1 \\ 0\end{array}\right] \quad \eta=\left[\begin{array}{l}x \\ 1\end{array}\right]$
(5) []
(6) []

Improper node．（how formula leads to phase porknit）
1．Consider $c_{2}=0, c_{1}=1$ ．
The coresp．sol is $e^{\lambda t} \xi$ ．
This manifests like all otter cases $\overline{\bar{\omega}}$ dishinguiskd lines．

2．consider $c_{1}=0, c_{2}=1$ ．
The caress．sorn is

Think of this as a line vo variable Pw salting．
3．Draw the line $\eta+$ t玄（dotted）since it＇s not an actual $\left.s d_{n}^{\prime}\right)^{t}$ ．
Notice that parallel to th Gist special son，but the direction may be different
4．Apply the Pu scalings $e^{\lambda t}$ ．
－Since η is the basepoint of the line，$e^{\lambda t}$ reducesto $e^{\lambda .0}=1$ ， so it dessit move．
If $\lambda<0$ ．points after η are scaled in，while points before ore expanded out．
If $\lambda>0$ ．th opposite happens．

$\lambda<0 \Rightarrow$ come in parallel to th 一急my $\lambda>0 \Rightarrow$ go out parallel to the $+\frac{3}{2}$ ray．

Basically look＠sign of λ ．\oplus He orange special sori passes through \＆going out．$\theta \Rightarrow$ passes through in going in．

Ten just Gill in all ollas．

How to draw the Phase Portrait for an improper node.
line

1. Pat. eq pt, special fotror corresponding to $\xi\left(\left(c_{2}=0\right)\right)$ and q.

The tail of the special sola Prang y 19 comes in with:

$$
\lambda=\theta \rightarrow-\frac{\xi}{2} \text { ray: }
$$

Fill in th rest and add arrows according to $\operatorname{sgn}(\lambda)$.

Nonlinear E.O. Systems (9.2)

- Just like ne were able to Freak e certain nonlinear $\underset{\sim}{\text { qualitative drawing graphs }}$ fists-order single equations, 4 those that are autonomous again, autonomous. we can also weal derain nonliner F.O. systems, by drawing phase portraits.
- Notice that th classification axes "censt/nonconst. coeff" and "homogt inhomog" are absent from th above discussion.
- In a nonlinear contract, the concept of a coefficient doesnit even really exist
- In a nonlinear context, homogeneity is pretty much irrelevant. In th linear context, the point of the distinction is that th homog. is easy to solves and then we can pull the soling of th inhomog. out of the solin to th nomog. In the nonlinear case, there's chen no such piggy-badaing, so the distinction is irrelevant.

4 Consider $(x+1)(x-2)=6$ us. $(x+1)(x-2)=0$; knowing the solon to th latter ((homog.) does nothing toward solving th Comer (linhomog)); we just have to re-solve it in full.

- Also, just like as linear systems, we only do th 2×2 case since that's all that we can draw.
9.3 －Local linearization al certain FOA 2×2 syblurs．
－Stability of equation $\underline{X}^{\prime}=A \underline{x}$ under perturbation of coifs
All characters de systems are stable under small perturbations of A excepl spiral points and nodes．
The two exceptions are unstable bbc thy correspond to bifurcations already（recall what 棌eigenvalue）cause them）， so a parturbation of A will tip th scale one way or per older．

Linerrization：．＠x°
1．change to $\underline{u}:=\underline{x}-\underline{x}$ so that crit $p t$ is e origin．
2．Search Cor A, g sit．$f(\underline{y})=A \underline{u}+g(u)$ ．
a）Try th suff．cond，below．
a）Try the suff．cond below．
c）Might harito finesse a bit to make A $\quad\binom{$ wont $\|g\| / /\| \| \rightarrow 0}{$ as $\|u\| \rightarrow 0}$ invertible（add some linerterms，and then subtract the again；absoberror

$$
\begin{aligned}
& \binom{\text { (Want }\|g\| /\| \| \| \rightarrow 0}{\text { is }\|u\| \rightarrow 0 .} \\
& \Rightarrow g / s, g_{2} / 1 \rightarrow 0
\end{aligned}
$$ into g）．See Ex． 2 on p． 521 d To check this，ivs helpful BD． to write g_{1}, g_{2} in poler form．

sufficient．
2equesung condition：F, G are C^{2} near $x^{\text {．}}$ ．
Then：$\underline{\dot{u}}=\underset{x^{0}}{D f}(\underline{u})+\underline{\eta}(\underline{u})$

$$
\begin{aligned}
& G \text { HOT From Taylor } \\
& \text { series Cor } F, G \text {. } \\
& \left.\left(\left(\eta_{i} / r_{(u)} \rightarrow 0\right)\right)\right)
\end{aligned}
$$

