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Abstract

The purpose of this report is to expound the proof of the landmark result presented in
Carleman Estimates for Geodesic X-ray transforms by Gabriel Paternain and Mikko Salo
from 2018. The abstract of that paper is quoted below for convenience. Their result follows
40 years of work concerning inverse problems in tensor tomography. This report is targeted
both at students, in that it attempts to work out all details and aims to provide as much
insight as possible, and at specialists, being written from a top-down POV and providing
many reference materials (in appendices).

In this article we introduce an approach for studying the geodesic X-ray transform
and related geometric inverse problems by using Carleman estimates. The main
result states that on compact negatively curved manifolds (resp. nonpositively
curved simple or Anosov manifolds), the geodesic vector field satisfies a Carleman
estimate with logarithmic weights (resp. linear weights) on the frequency side.
As a particular consequence, on negatively curved simple manifolds the geodesic
Xray transform with attenuation given by a general connection and Higgs field
is invertible modulo natural obstructions. The proof is based on showing that
the Pestov energy identity for the geodesic vector field completely localizes in
frequency. Our approach works in all dimensions ≥ 2, on negatively curved
manifolds with or without boundary, and for tensor fields of any order.



Preface

This report serves three functions, which also illuminate its intended audience
1. To record what I learned while working on this project and to demonstrate my under-

standing
2. To help my supervisor understand the paper. He and other specialist/expert readers

will be most interested in my commentary on the high-level structure of the paper and
its proofs, since I don’t think any of the math is hard to follow if you’re familiar with
the territory. Appendix A contains all this kind of material. The other aspect that
I think such readers will appreciate are all the nuances/distinctions that I’ve pointed
out in places where things are not clear in the paper.

3. To help future students have an easier go at learning the paper. They will appreciate
appendix C, since I’ve attempted to collect all the prerequisite knowledge into one
place. Although I haven’t expounded all of it, I (hope that I) at least recorded what
one should learn and where to find it.

This report is not entirely a stand-alone item; it’s more of a companion to the paper itself.
I’ve retained the numbering of results, and this report makes many references back to the
original text. This report follows one thread within the larger paper: specifically, how
the Carleman estimate is used to give a partial solution to the injectivity problem for ray
transform. Although the estimate or other results along the way may be of independent
interest, I’ve generally ignored that in order to make this report more focused. As well, this
report only follows the development of one of the two Carleman estimates given in the paper
– this report doesn’t address Theorem 1.2 and Chapter 7.

Literature review

There are essentially four papers that lead up to [PS18]: [PSU12, PSU13, PSU15, GPSU16].
[GPSU16] helps quite a bit with understanding [PS18]; I would recommend that students
read it first because there are certain things that are completely omitted from PS18 (e.g. the
discussion around s-injectivity). The other one that I would recommend reading is [PSU12],
because it lays down the preliminaries for connections and Higgs fields; the rest of the papers
assume this stuff tacitly. It should be noted, though, that as with all the other work from
the early part of the decade, the paper only treats the 2D case, so some modifications are
necessary.
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How to read this report

• This report uses mostly the same notation as in the paper, but I’ve made a few changes
to improve clarity. Where changes were made, I pointed them out

• The knowledge that I’m assuming of anyone who wants to use this report to understand
PS18 is just a good grasp of smooth manifolds and Riemannian Geometry. All the
other little bits (and there are a lot) are included in appendix C

Some peculiarities of my writing style

• I use parentheses, brackets, and multiplication dots to break up formulae to improve
readability. If you find yourself wondering “why is there a dot here and not there;
do they mean different things, etc.”, the answer is almost certainly no - it’s just for
aesthetic reasons. If you really want to be sure, ask yourself how much harder it would
be to read/parse if it were written in a more consistent manner/how you think it should
be written

• I put most hypotheses and notation as a bulleted list at the end of a theorem statement,
so that the text itself highlights the main point as clearly as possible

• I have the somewhat non-standard practice of including page numbers with all refer-
ences. Mostly it’s for my own benefit; I double/triple/quadruple check myself and I’m
constantly going back to get additional details, etc, and it’s much more efficient than
having to hunt for the item each time. I intended to include the exact edition of each
item used in the bibliography, but I wasn’t able to figure out how to get Mendeley and
bibTex to play nice, so that’ll have to wait until the next version

• I start each new section on its own page because I mark up my texts so heavily that
otherwise the section headings basically disappear into the background and I can’t find
my place
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Chapter 1

Introduction

1.1 The Geodesic X-Ray Transform
The simplest version of the ray transform is the Radon transform, which takes a function on
R2 and returns the family of values obtained by integrating it over all lines L:

R[f ](L) :=

∫
L

f

The attenuated Radon transform includes a cumulative factor - known as the attenuation)
that scales f before integrating:

R[f ](L) :=

∫
L

exp

(∫
L(−∞,t]

a

)
· f

There are many directions in which to generalize:
• of course, we can move to higher dimensions
• we can consider the geometric domain to be a manifold rather than Rn (in which case

we integrate over geodesics)
• we can consider other objects that can be integrated, such as tensor fields

The case that we’re interested in is symmetric covariant tensor fields on a certain class of
manifolds:

Definition. A CDRM (compact dissipative Riemannian manifold) is a manifold with the
following properties:
(i) with boundary
(ii) compact
(iii) dissipative/non-trapping (no infinite geodesics)
(iv) boundary is strictly convex (geodesics between two boundary points are entirely con-

tained in M◦; more on this in C.2.1)

Let’s now discuss why this class of manifolds is the appropriate setting. The first thing
to note is that the problem arises as the linearization (in g) of the problem of determining
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a metric on a manifold with boundary from its hodograph. So that justifies the restriction
to manifolds with boundary.

To define the ray transform of a tensor, we need to define what we mean by integrating
a tensor along a curve:
Definition. Given a tensor field T on M , we “lift” it to a function on SM by evaluating
it in a specific way: for θ = (x, v) ∈ SM we define T̃ (θ) := Tx(v, · · · , v) (i.e. plugging v into
all the slots).
Here’s what the attenuated ray transform looks like on a manifold:

IA[T ](θ) =

∫ τ(θ)

0

exp

(∫ t

0

A
(
ϕX
s (θ)

)
ds

)
· T̃
(
ϕX
t (θ)

)
dt

where:
• T is a covariant tensor field
• (̃·) is the evaluation/lifting operation
• θ is the general point of ∂+SM (the inward-pointing boundary vectors)
• ϕX

t is the geodesic flow: ϕX
t (θ) = (γθ(t), γ̇θ(t))

– X is the geodesic vector field
– γθ is the geodesic determined by the initial condition θ = (x, v)

• A is the attenuation
• τ(θ) is the time at which the geodesic γθ terminates (by arriving at ∂M)

Note: we write the attenuation factor first so that the expression still makes sense in the
case that T is vector-valued; in that case, A is a matrix, so we interpret exp as the matrix
exponential, and the dot as matrix multiplication.

When we study the ray transform, we find it helpful to work with a version that’s de-
fined on all of SM rather than just ∂+SM . It’s denoted uT , and it’s defined by the same
formula by just letting θ vary over all of SM .

It should be noted that uT is in general not smooth on ∂0SM ; it inherits its non-
smoothness from τ(θ) [Sha94] (p.128). However, Prop 5.2 of [PSU12] (bottom of p.16)
tells us that it’s smooth for T ∈ ker I. Note: the proof piggybacks off Lemma 1.1 of [PU05]
(p.7; proof on p.14), which refers to a result in a PDE text by Hormander.

A fundamental fact in the study of the ray transform is that (X+A)uT = −T̃ . (This can
be verified by direct computation.) In fact, this PDE (with appropriate boundary condition)
can be used to define uT :
Theorem. uT is the unique solution to the following problem:{

(X +A)u = −T̃ on SM
∂−u ≡ 0

• proven by applying the method of characteristics. The characteristics in this case are
the curves γ̃θ(t) = ϕX

t (θ). There are some details, but the proof isn’t relevant to the
thread we’re following.
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1.2 Two and a half Explicit Examples

1.2.1 Euclidean Disc
We’ll compute the (unattenuated) ray transforms of some basic tensors for M = D. In this
example, ∂M = S1, geodesics are straight lines, and τ is as follows:

τ(θ) = −(x · v) +
√

(x · v)2 − ∥x∥2 + 1

( = −2(x · v) on ∂SM)

The ray transform of a tensor T = TI dx
I , where the I is a multi-index, is:

uT =

∫ τ(θ)

0

TI(γθ(t)) · dxI(γ̇θ(t)) dt

= vI
∫ τ(θ)

0

TI(x+ tv) dt

Notice how the factor dxI(γ̇θ(t)) reduces to a constant(vI) and so doesn’t play any part in
the integral. This means that the only factor that determines how hard it is to actually
evaluate the integral is the coefficient function TI , and we can write down the transforms
of a bunch of simple tensors quite easily. Below are recorded the ray transforms of some
specific simple tensors:

dxI vI lθ

x dxI , y dxI vI
(
1
2
v1l

2
θ + x1lθ

)
, simile

x2 dxI , y2 dxI vI
(
1
3
v21l

3
θ + x1v1l

2
θ + x21lθ

)
, simile

xy dxI vI
(
v1v2l

3
θ +

1
2
[x1v2 + x2v1]l

2
θ + x1x2lθ

)
x dx+ y dy 1

2
l2θ + (x · v)lθ

x dy − y dx det [x|v] lθ
(x2 + y2) dxI vI

(
1
3
l3θ + (x · v)l2θ + ∥x∥2 lθ

)
x2 dy⊗2 − y2 dx⊗2 v1v2 det [x|v] l2θ + (x21v

2
1 + x22v

2
2)lθ
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1.2.2 Spherical Cap
Slightly more complexM = spherical cap of radius 1 with height H ∈ (0, 1). We have ∂M =
circle of radius

√
1− (1−H)2 in the xy plane, and geodesics are given by:

γθ(t) = C + cos(t)
⇀

Cp+ sin(t)v

where
• θ = (p, v) = (p1, p2, p3|v1, v2, v3)
• C = (0, 0, H − 1), the centre of the sphere

We can then compute the length of geodesics:

τ(θ) = arccos

(
Hc√

v23 + (p+3 )
2

)
+ arctan

(
p+3
v3

)
(±2kπ fudge factor?)

where:
• Hc = 1−H
• p+3 = p3 +Hc

Finally, we can use this information to compute the (unattenuated) ray transform. Unlike
the previous example, the factor dxI(γ̇θ) in the integral doesn’t reduce to a constant, and
so the integrals are a lot harder. Hence we’ll only do one specific tensor: the one whose
expression in the coordinate system φ := πxy is Tφ = dx. We find:

udx(θ) = v1 sin(τθ) + p1 [cos(τθ)− 1]

=
1

v3 + (p+3 )
2

[
Hc(p+3 v1 + p1v3) +

(
v1v3

√
v23 + (p+3 )

2 −Hcp1v3

)√
1− (Hc)2

v23 + (p+3 )
2

]
The process of expanding the ray transform into coordinates to obtain the preceding expres-
sion is quite a nightmare; the following intermediates are recorded here for posterity:

sin(τθ) =

√
1− A2 + AB√

1 +B2
A =

Hc√
v23 + (p+3 )

2

cos(τθ) =
A− A

√
1− A2

√
1 +B2

B =
p+3
v3
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1.2.3 Pringle (hyperbolic paraboloid)
This is hardly an example at all, but we’ll record some facts nonetheless. HereM is the graph
of x2 − y2 over D̄. It turns out that the geodesics can’t even be written out in elementary
terms, so it’s very dubious that ray transforms could end up being expressible in elementary
terms. The geodesic equations are recorded here:{

ẍ+ 4
1+4x2+4y2

(xẋ2 − yẏ2) = 0

ÿ + 4
1+4x2+4y2

(yẏ2 − xẋ2) = 0
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1.3 The Problem
The question is whether or not the geodesic ray transform of symmetric covariant tensors is
injective. That is, can a function/tensor be recovered from its integrals over geodesics?

The specific type of attenuations we work with are of the following form:

A = Ã(θ) +Φ(x)

• A ∈ Ω1(M)n×n is a matrix of 1-forms. This is called a general connection. The
lifting is applied entry-wise.

• Φ is just a unitary matrix-valued function on M . This is called a Higgs field.

The type of attenuation we consider is chosen smartly so that we can interpret it as the
connection form of a connection on the bundle in which the tensor takes values, and then
it miraculously disappears into the notation when we pass to the PDE formulation of the
problem (see 1.4.3)
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1.4 The Solution

1.4.1 Natural Obstruction to Injectivity
First, we need to clarify what is meant by “injectivity” in this context. When we’re talking
about the ray transform of functions (i.e. 0-tensors), injectivity has the usual meaning.
When we’re talking about tensors of positive order, true injectivity is never possible: all
(symmetric covariant) tensors have a (unique) “exact” component (called the potential part,
see C.2.3) that vanishes under the ray transform (recorded in the proposition below), so
any two tensors with the same potential part will naturally be indistinguishable based on
only their ray transforms. Therefore, the most we can hope for is that we would still be
able to distinguish the remainders (called the solenoidal components). This is referred to
as s-injectivity of the ray transform. So “injectivity” in the case of positive-order tensors
really means s-injectivity.

Proposition. All potential tensors vanish under the ray transform.

Proof. Potential tensors have the form dS, where S|∂M ≡ 0. We want to show that I[dS] =
0. Consider this: the inner derivative is essentially differentiation along geodesics, while the
ray transform is integration along geodesics. Hence I[dS] can be evaluated by restricting
to geodesics and then applying the fundamental theorem of calculus. Due to the boundary
condition on S, the difference in boundary values is 0, completing the argument. ■
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1.4.2 Theorem and Proof Outline
As discussed in the previous section, the best we can hope for is s-injectivity. The work in
[PS18] proves the following:

Theorem. The attenuated ray transform is s-injective for (symmetric covariant) tensors
of all orders on (compact dissipative) manifolds of negative curvature.

The proof is best thought of in two parts: the proof of the Carleman estimate, and then
the proof of the theorem itself using the Carleman estimate. The proof of the Carleman
estimate is the content of Chapter 4; here we’ll outline the proof of the theorem itself. The
two flowcharts in Appendix A.2 demonstrate the structure of these two parts graphically.

At this point, the reader is directed to read Appendices B.1, B.2, B.3 before continuing.

Rather than working with the property of s-injectivity as it’s defined, we’ll reformulate
it in the language of PDE’s:

Theorem (Reformulation). The ray transform on M is s-injective ⇐⇒ for all polyno-
mials f , we have ∂+uf ≡ 0 =⇒ uf is polynomial.

Proof: next section (1.4.3)

This opens the doors to all the tools from PDE theory. Our starting point is the Carle-
man estimate for the geodesic vector field:

Theorem 1.1/6.2 (The Carleman Estimate). On a compact Riemannian manifold
with negative sectional curvature ≤ −κ < 0 for some κ > 0 (compact =⇒ bounded away
from 0), the following holds for any τ ≥ 1 and m ∈ Z+:

∞∑
l=m

e2τφl ∥ul∥2 ≤
(d+ 4)2

κτ

∞∑
l=m+1

e2τφl ∥(Xu)l∥2

where:
• u ∈ C∞(SM), with u|∂SM ≡ 0 if M has boundary
• X is the geodesic vector field (acting as a differential operator)
• l as subscript refers to decomp w.r.t. vertical spherical harmonics
• ∥·∥ is the norm on L2(SM)
• φl = log(l)
• d = dim(M)

Proof: Ch. 4

Using the Carleman estimate, we prove the following general theorem about (possibly
nonlinearly) attenuated transport equations:

Theorem 1.4/9.1.
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(i) Under the same hypotheses as Theorem 1.1/6.2, it’s known that all smooth solutions to
the attenuated transport equation Xu+A(u) = −f (with boundary condition ∂u ≡ 0)
are polynomial when:
• f itself is polynomial
• A is any operator on C∞(SM,Cn) that satisfies ∥(A(u))l∥ ≤ R · (∥ul−l∥+ ∥ul∥+

∥ul+1∥) for l ≥ some l0 ≥ 2
(ii) deg(f) ≤ max{l0 − 1, deg(f), 2Cd,κR} − 1

• Cd,κ is defined through the course of the proof

Proof: 2.1

We then piggy-back off that to prove our desired result, which we state as Theorem 1.5/9.2:

Theorem 1.5/9.2 (Main theorem of PS18).
(i) Under the following conditions, uA+Φ

f is a polynomial of degree ≤ deg(f)− 1:
• M satisfies the hypotheses of Theorem 1.1/6.2 and is non-trapping
• either ∂M is strictly convex or supp(f) ⊂ SM◦

• f is polynomial
• f ∈ kerIA+Φ

(ii) In the case that f is homogeneous (such as when f = T̃ ), uf is also homogeneous, and
its degree is exactly deg(f)− 1

Proof: 2.2

Remarks

• Whereas the first Carleman estimate applies to manifolds of strictly negative curvature,
the second Carleman estimate (Theorem 1.2) applies to manifolds with nonpositive
curvature – under the addition assumption that they’re also simple or Anosov. While
they remark (bottom of p.5) that it can be used to obtain s-injectivity for this class of
manifolds in a manner analogous to that for manifolds of strictly negative curvature,
they note there that two extra ingredients are needed; one of which would restrict the
applicability to attenuations consisting of only a Higgs field (i.e. no general connec-
tion), and the other is an “additional regularity condition” for which they don’t have
a proof.

• τ is irrelevant for the purposes of the unattenuated transport equation. It comes into
play when we consider attenuations. See bottom of p 4/top of p. 5 in [PS18]
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1.4.3 Reformulation as PDE problem
The reformulation relies on the following facts:

1. The lifting/evaluation operation ·̃ is a bijection from symmetric (covariant) tensors on
M to homogeneous polynomials on ∂+SM .

2. (On SM ,) being polynomial is equivalent to being finite-degree and smooth
3. deg

(
T̃
)
= deg(T )

4. uT solves the system  Xu = −T̃
∂+u = I [T ]
∂−u ≡ 0

5. d̃T = XT̃
6. (Xf)tens = d(f tens) if f is polynomial (otherwise it couldn’t be tensorized)

The presence of attenuations introduces complexity into the reformulation, so we’ll do it in
three steps based on increasing level of complexity.

Unattenuated (A = 0)

For some reason, I find it clearest to do this purely symbolically. We begin with the statement
“I is s-injective on the manifold M”:

∀T ∈ Symm(M)︸ ︷︷ ︸
φ

[
I[T ] ≡ 0 =⇒ ∃S ∈ Symm−1(M) s.t. T = dS and S|∂M ≡ 0

]

Since (̃·) is a bijection Symm → Pm, we can “reparametrize”. We replace φ with “∀f ∈ Pm”,
and then replace each instance of T with f tens. We do the same for S, replacing it by h.
After both changes:

∀f ∈ Pm

[
I[f tens]︸ ︷︷ ︸
=∂+uf

≡ 0 =⇒ ∃h ∈ Pm−1 s.t. f tens = d(htens)︸ ︷︷ ︸
⇐⇒ f=Xh

and htens|∂M ≡ 0︸ ︷︷ ︸
⇐⇒ ∂h≡0

]

Without all the clutter, it reads:

∂+uf ≡ 0 =⇒ f = Xh for some polynomial h with ∂h ≡ 0

Since the transport equation has a unique solution for that boundary condition (see C.3.1),
h can only be uf . So really, what the above statement says is:

∂+uf ≡ 0 =⇒ uf is a polynomial
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Attenuated with general connection only (A = A)

This case can be reduced to the previous case easily: look at u as taking values in the trivial
bundle SM × C instead of C proper. If we give the bundle a different connection, then
we get different exterior and inner derivatives. The connection gives a connection form A,
and the connection form back-determines the connection, so we denote the corresponding
exterior/inner derivatives by dA. In the same way that d = X, we also have dA = X + A.
Then what we’re trying to show becomes I[T ] = 0 =⇒ T = dAS, and it works the same
way.

Attenuation including Higgs field (A = A+Φ)

This case is more little interesting, because now the LHS of the transport equation is no
longer homogeneous: Xu and Au are deg(u) + 1, but Φu is still only deg(u). Thm 4.6 of
[GPSU16] shows how to do this.

15



Chapter 2

Proofs of Main Theorems

2.1 Proof of Theorem 1.4/9.1

Outline

1. Estimate ∥(Xu)l∥2in terms of certain ∥ul∥’s (only holds for l sufficiently large).
2. Chain the estimate from Step 1 with the Carleman estimate 1.1/6.2 and do some black

magic to get an inequality
∑∞

m ωl∥ul∥2 ≤ K
∑∞

m ωl∥ul∥2. (The ωl’s are weights that
come out in the proof.)

3. Absorb RHS into LHS (requires knowledge of the constant K) to get a weighted sum
bounded above by 0.

4. Conclude that u has finite degree. We also get an explicit bound on the degree.

Proof

Step 1:
First, decompose the transport equation into individual frequencies:

(Xu)l +A(u)l = −fl

Notice that for l ≥ deg(f)+1, the RHS = 0. Hence for such l we have ∥(Xu)l∥ = ∥A(u)l∥. For
l ≥ l0, we can apply the bound in the statement of the theorem. Hence l ≥ max{deg(f)1, l0}
gives:

∥(Xu)l∥ ≤ R · (∥ul−1∥+ ∥ul∥+ ∥ul+1∥)

To convert this into a version where all terms are squared (which is necessary in order for
the estimate to be compatible with the Carleman estimate), square the RHS and use the
fact that 2ab ≤ a2 + b2 to estimate away the cross-terms:

∥(Xu)l∥2 ≤ 3R2 ·
(
∥ul−1∥2 + ∥ul∥2 + ∥ul+1∥2

)
Step 2:
If we take m ≥ max{deg(f), l0 − 1} in the Carleman Estimate 1.1/6.2, then every term on
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its RHS can be bounded with the estimate from Step 1 (since the frequencies involved are
l ≥ m+ 1 = exactly the values of l for which the bound from Step 1 holds). We get:

∞∑
l=m

l2τ∥ul∥2 ≤
3CR2

τ

∞∑
l=m+1

l2τ
(
∥ul−1∥2 + ∥ul∥2 + ∥ul+1∥2

)
As in 1.1/6.2, this holds for any τ ≥ 1. Reordering the terms, adding a bit extra to the
frequency-(m+ 1) and -(m+ 2) terms (for symmetry), and re-indexing:

≤ 3CR2

τ

∞∑
l=m

[
(l − 1)2τ + l2τ + (l + 1)2τ

]︸ ︷︷ ︸
≤2(l+1)2τ for all l ≥ 1

·∥ul∥2

Using the fact that (l + 1)2τ ≤ el2τ for l ≥ 2τ , we can write (if we additionally assume that
m ≥ 2τ):

≤ 6eCR2

τ

∞∑
l=m

l2τ∥ul∥2

Step 3:
Now we want to absorb the RHS into the LHS by choosing τ . Any τ = (1+ε)6eCR2 will work.

Step 4:
The above choice of τ allows us to conclude that u has finite degree≤ m−1 = max{deg(f), l0−
1, 2(1 + ε)6eCR2} − 1.

■

Remarks

1. Regarding Step 3: In [PS18], their τ corresponds to ε = 1. While the choice of ε makes
no difference towards concluding that u has finite degree, it does affect the bound on
the degree, which I’ve recorded in Step 4.

2. For the purpose of this report, the bound on the degree is actually irrelevant. We only
use the fact that the degree is finite, which goes into the proof of 1.5/9.2.

17



2.2 Proof of Theorem 1.5/9.2

Outline

The idea is to start with a solution to a simpler problem, and then upgrade it to a solution
of the present problem.

1. Existence for simpler problem
2. Upgrade the boundary condition
3. Smoothness
4. Finitude of degree (by appealing to 1.4/9.1)
5. Refinement of Step 4: bounding the degree (by contradiction); uses GPSU16-5.2

Proof

Step 1:
We begin with a solution of the simpler problem{

f = −(X + A+ Φ)u on SM
∂−u ≡ 0

(from the problem in the statement of the theorem, we’ve weakened the boundary condition
and discarded the smoothness and degree requirements.)

Step 2:
Under the hypothesis that f ∈ kerIA+Φ, we can actually conclude that the solution to the
problem in Step 1 satisfies the stronger boundary condition u ≡ 0 on all of ∂SM .

Step 3:
With the stronger boundary condition from step 2, we can appeal to existing regularity
results to obtain smoothness. The two cases in the third hypothesis are treated separately.
We state the results here, but otherwise take them as black boxes.

Case 1: ∂M is strictly convex – Prop. 5.2 of [PSU12] (p.16)

Case 2: supp(f) ∈ SM◦ – Prop. 8.1 of [PS18] (p.39)

Step 4:
Now that we know that f is smooth, we can appeal to 1.4/9.1 (with A = A + Φ and
l0 = max{deg(f)− 1, 2}. We conclude that u has finite degree.

Step 5:
Assume, towards a contradiction, that deg(u) ≰ deg(f)− 1. Note that the previous inequal-
ity implies that deg(u) ≥ deg(f). By rewriting X + A = XA = XA

+ + XA
− , the transport

equation looks like this:
XA

+u+XA
−u+ Φu = −f

18



Now consider the frequency-(deg(u) + 1) component of each side:

(XA
+u)deg(u)+1︸ ︷︷ ︸

=XA
+ (udeg(u))

+(XA
−u)deg(u)+1︸ ︷︷ ︸

=XA
−(udeg(u)+2)

+(Φu)deg(u)+1︸ ︷︷ ︸
=Φ(udeg(u)+1)

= −fdeg(u)+1

The second and third terms on the LHS vanish because u doesn’t have any frequency-
(deg(u) + 1) or -(deg(u) + 2) terms, and the RHS vanishes by the assumption we made.
Denoting udeg(u) – the top-degree term in u – by utop, we’re left with XA

+(u
top) = 0.

Now, since utop|∂(SM) ≡ 0, GPSU16-5.2 implies that utop ≡ 0 – a contradiction (by defi-
nition, the top-degree component is nonzero).

We conclude that deg(u) ≤ deg(f)− 1.
■
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Chapter 3

The Pestov Identity

3.1 Generalities

The Pestov identity is a fundamental energy identity concerning the operator P :=
v

∇X :
C∞(SM,Cn) → Zn (Z to be defined shortly). The original/most basic version was suppos-
edly introduced by Pestov and Sharafutdinov in [PS88] (which seems to exist only in print);
in [PSU13] it’s noted that it has been used in most proofs of injectivity results for the ray
transform since work on the problem began (p.7). In the same paper, they record it as (p.9):

∥V Xu∥2 = ∥XV u∥2 − (KV u, V u) + ∥Xu∥2

In this instance, V is the vertical vector field, which acts the same as
v

∇ since there’s only
one vertical direction in the 2D setting, and K is the usual sectional curvature.

The analogue for higher dimensions was introduced in [PSU15] (Prop 2.2, p.12), and
reads as follows: ∥∥∥∥ v

∇Xu
∥∥∥∥2 = ∥∥∥∥X v

∇u
∥∥∥∥2 − (R v

∇u,
v

∇u
)
+ (d− 1) ∥Xu∥2

In order to interpret these identities properly, we must note that some normed quantities
take values in Cn, while others take values in TM . To nail down the appropriate notion of
norm/inner product for the TM -valued quantities, we introduce the function space Z.

At this point, the reader is directed to read Appendix B.4 before continuing.

Throughout the suite of papers leading to [PS18], a series of generalizations have been
obtained. The next section covers those presented in [PS18]

20



3.2 Pestov with Connection
In this paper, they derive three new versions, which are recorded in the lemma below. In
addition to generalising it to address general (i.e. not necessarily unitary) connections, they
also introduce the notion of expressing it in terms of the decomposition X±. Interestingly,
none of these results are used full-strength in the proof of the Carleman estimate; we just
end up setting A = 0, which reduces to a version of the Pestov identity equivalent to the
one presented in [PSU15].

Taking a look at the flowchart, let’s pay some attention to the step where we set A = 0.
In all the work up to that point, they record what happens when A is allowed to be fully
general. But all that knowledge isn’t necessary to prove the Carleman estimate: it all flows
through the filter that sets A = 0, effectively forgetting that information. Since the main
goal of the present report is the proof of the Carleman estimate, we won’t provide the proofs
of any of their Pestov identities (it’s all just symbol-pushing, anyways).

Lemma (Pestov identities from [PS18]):
(i) Lemma 4.2 – A fully general:(

v

∇XAu,
v

∇X−A∗
u

)
Z
=

(
XA

v

∇u,X−A∗ v

∇u
)

Z
−
(
R̃

v

∇u,
v

∇u
)

Z
−
(
FAu,

v

∇u
)

Z
+(d−1)

(
XAu,X−A∗)

Z

(ii) Lemma 4.3 – A fully general (in terms of XA
±):(

XA
−u,X

−A∗

− u
)
α
−
(
R̃

v

∇u,
v

∇u
)

Z
−
(
FAu,

v

∇u
)

Z
+(ZA(u), Z−A∗(u))Z =

(
XA

+u,X
−A∗

+ u
)
β

(iii) Proposition 4.4 – A unitary (in terms of XA
±):∥∥XA

−u
∥∥2
α
−
(
R̃

v

∇u,
v

∇u
)

Z
−
(
FAu,

v

∇u
)

Z
+ ∥ZA(u)∥2Z =

∥∥XA
+u
∥∥2
β

(iv) A = 0 (in terms of X±):

∥X−u∥2α −
(
R̃

v

∇u,
v

∇u
)

Z
+ ∥Z(u)∥2Z = ∥X+u∥2β

where:
• u ∈ C∞(SM,Cn), with ∂u ≡ 0 if M has boundary

• ZA(u) is the
v

div-free part of
h

∇A

• subscripts α, β indicate a weighted version of the standard inner product: ∥u∥2α =∑
αl ∥ul∥2, with the following weights:

αl =

{
d− 1 l = 0

(2l + d− 2)
(
1 + 1

l+d−2

)
l ≥ 1

βl =

{
0 l = 0, 1

(2l + d− 2) (1− 1/l) l ≥ 2
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The following table records how these fit in with other versions from previous papers:
“default” in terms of X±

no connection [PSU15] (taking A = 0 in Prop 4.4)
unitary connection [GPSU16] Prop 4.4
general connection Lemma 4.2 Lemma 4.3
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3.3 The Single-Frequency Pestov Identity
The single-frequency Pestov identity just records how the unitary Pestov identity of Propo-
sition 4.4 simplifies when you plug in a spherical harmonic (i.e. a function with only one
nonzero frequency component): all the terms with the “wrong” degree in the sums defining
∥−∥α , ∥−∥β vanish. And those are the only terms that change; the other ones just stay the
same:

Proposition 5.1 (Single-Frequency Pestov Identity).

αl−1

∥∥XA
−u
∥∥2 − (R̃ v

∇u,
v

∇u
)

Z
−
(
FA(u),

v

∇u
)

Z
+ ∥ZA(u)∥2Z = βl+1

∥∥XA
+u
∥∥2

• M compact; with or without boundary
• A a unitary connection
• l ≥ 0
• u ∈ Ωl

• u|∂SM ≡ 0 if M has boundary
• αl, βl as defined in the previous section
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3.4 Frequency Localization
The idea here is that we would like to say that the right and left sides of the unitary
Pestov identity of Proposition 4.4 can be evaluated by summing each of the single-frequency
identities corresponding to the components of the input function.
Lemma 5.2 (Frequency-Localised Pestov Identity). For u ∈ C∞(SM) and unitary
connection A we have:

∥∥XA
−u
∥∥2
α
−
(
R̃

v

∇u,
v

∇u
)

Z
−
(
FAu,

v

∇u
)

Z
+ ∥ZA(u)∥2Z

=
∞∑
l=0

[
αl−1

∥∥XA
−ul
∥∥2 − (R̃ v

∇ul,
v

∇ul
)

Z
−
(
FA(ul),

v

∇ul
)

Z
+ ∥ZA(ul)∥2Z

]
=

∞∑
l=0

βl+1

∥∥XA
+ul
∥∥2

=
∥∥XA

+u
∥∥2
β

• Note: the statement of Lemma 5.2 doesn’t actually say what they want it to say; as
it’s written there, they subtract the RHS’s from the LHS’s within each summand, so
that all summands reduce to 0 (as does the RHS). Hence their equation reads

∑
0 = 0,

which doesn’t say anything meaningful. The proper way to write it out is to have a
four-way equality as presented here

Public Service Announcement: Major Discrepancy

Multiple times in [PS18], they emphasise that Lemma 5.2 is a key point in the proof of the
Carleman estimate:

• abstract: “the proof is based on showing that the Pestov identity localises in frequency”
• p.8: “an important observation of the present paper”, “paves the way for the Carleman

estimate”
• p.9: “key result on frequency localisation”
• p.21: “this will be a very important observation in what follows”

However, I was not able to find any way in which this proposition was used. As demonstrated
by the flowcharts in the appendix, I meticulously (in my opinion, at least), traced the
dependencies between all the results in the paper, so I’m pretty confident in claiming that
it doesn’t get used anywhere. I also searched the PDF for “5.2”, “localiz” and it didn’t turn
up any instances of it being invoked by name in a proof.

Proof outline

1. expand u’s in the Pestov identity of Proposition 4.4 into components; move sums out
of the inner products and norms.

24



2. notice that there are three types of cross-terms that need to vanish for the localisation
to hold

3. prove that they do, in fact, vanish. This step is recorded and proven as Lemma 5.3:

Lemma 5.3. For u ∈ C∞(SM) and unitary connection A we have:

(i)
(
R̃

v

∇ul,
v

∇um
)

Z
= 0

(ii)
(
FAul,

v

∇um
)

Z
= 0

(iii) (ZA(ul), ZA(um))Z = 0
• Proof of this proposition is over the next three sections
• Only the proof of the first assertion is documented in this report because I typed it up

before I realised the major discrepancy discussed above. Since the main goal of this
report is to expound the proof of the Carleman estimate, I abandoned the other two
assertions once I realised that they may not be relevant
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3.4.1 Proof of Lemma 5.3(i)

WTS
(
R̃

v

∇ul,
v

∇um
)

Z
= 0 when l ̸= m

Proof Outline

1. write the inner product as an integral
2. factor into two integrals by Fubini/disintegration (see C.5)
3. rewrite the integrand. Involves properties of spherical harmonics and symmetries of

the curvature tensor
4. using the new expression for the integrand (from Step 3), show that the inner integral

=0 always. Involves properties of spherical harmonics. Breaks down into two cases.

Proof

Step 1: (
R̃

v

∇ul,
v

∇um
)

Z
=

∫
SM

〈
R̃θ

v

∇ul,
v

∇|θum
〉

Nθ︸ ︷︷ ︸
=: Ax(v)

dµL(θ)

(While Ax(v) can be written as just being a function of θ, we look at the components x and
v of θ differently, since we don’t need to vary x in this context. Accordingly, we permanently
drop x from the notation.)

Step 2:

=

∫
M

∫
SxM

Ax(v) dµSxM(v)︸ ︷︷ ︸
=: I(x)

dµM(x)

To show that I(x) = 0 ∀x ∈M , we need to substantially rewrite A(v). We will also suppress
v from the notation for the subsequent computation (to reduce clutter), but it will come
back later (whereas x won’t). (As an aside, note that each term in the subsequent expansion
of A is itself also a function of v - and x in the background, but we’re permanently ignoring
x as discussed previously.)

Step 3:

A =

〈
Rx

[
v

∇|θul, v
]
(v),

v

∇|θum
〉

TxM

=Rabcd · ∂a[ul] · vb · vc · ∂d[um]
=Rabcd · (−mvaul + ha) · vb · vc · (−lvdum + qd)

=

mlulum ·Rabcdv
avbvcvd︸ ︷︷ ︸

=: B

−

mul ·Rabcdv
avbvcqd︸ ︷︷ ︸

=: C

−

lum ·Rabcdh
avbvcvd︸ ︷︷ ︸

=: D

+Rabcdh
avbvcqd
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Note that, like A, each of B, C, D is also a function of v (and x). Now we show that each of
these three terms = 0. Remember that there are sums hiding behind the strings of symbols;
cancellation among terms in each sum is what reduces it to 0. We invoke the symmetries of
the Riemann curvature tensor R (see Thm in C.2.6).

B =

(∑
abcd

)
Rabcdv

avbvcvd

We’ll rearrange the terms in the sum according to their first two indices:
• Those whose first two indices are distinct can be grouped in a special way: since
vavbvcvd = vbvavcvd, we can writeRabcdv

avbvcvd+Rbacdv
bvavcvd as (Rabcd +Rbacd) v

avbvcvd,
which will allow us to capitalize on one of the symmetries of R

• Those whose first two indices are identical can be written Riicdv
ivivcvd; these don’t

occur in pairs, but another symmetry of R takes care of them
In summary:

=
∑
icd

Riicd︸︷︷︸
= 0

vivivcvd +
∑
a̸=b

(Rabcd +Rbacd)︸ ︷︷ ︸
= 0

vavbvcvd

= 0

(Note that we could have just as easily rearranged according to the last two indices, since
they have the same symmetries as the first two.)

C =

(∑
abcd

)
Rabcdv

avbvcqd

=
∑
id

Riiid︸︷︷︸
= 0

viviviqd +
∑

a,b,c not all equal
(Rabcd +Rbcad +Rcabd)︸ ︷︷ ︸

= 0

vavbvcqd

= 0

D - The proof is analogous to that of C = 0, except that we rearrange according to the last
three indices instead of the first

Hence we conclude that A = Rabcdh
avbvcqd.

Step 4:
We use this new expression to prove that I(x) = 0 ∀x ∈M . First of all, note that Rabcd is a
function of only x (being a component of a tensor field), so we can bring it out of the inner
integral. Remember, though, that there’s a sum hiding in the background, so we need to
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make sure that it’s legal to do so (it is, by linearity of the integral)

I(x) =

∫
SxM

[(∑
abcd

)
Rabcd(x) · havbvcqd

]
dµSxM(v)

=
∑
abcd

[
Rabcd(x)

∫
SxM

havbvcqd dµSxM(v)︸ ︷︷ ︸
= (havb,vcqd)

L2(SxM)

]

We’ll now show that each of the inner products
(
havb, vcqd

)
L2(SxM)

= 0 when l ̸= m, which
reduces everything to 0 and completes the proof. There are a few cases to consider, based
on the values of l and m. Recall that ha and qd came out of applications of Lemma 5.4(i).
Applying Lemma 5.4(ii), we can expand the inner product as follows:(

havb, vcqd
)
L2(SxM)

=
(
hab︸︷︷︸
∈Ωm

, qcd︸︷︷︸
∈Ωl

)
+
(
hab︸︷︷︸
∈Ωm

, f cd︸︷︷︸
∈Ωl−2

)
+
(
fab︸︷︷︸

∈Ωm−2

, qcd︸︷︷︸
∈Ωl

)
+
(
fab︸︷︷︸

∈Ωm−2

, f cd︸︷︷︸
∈Ωl−2

)
(all inner products on the RHS are also in L2(SxM))

Recall that the Ω spaces are orthogonal. Hence in the case l ̸= m (which is a hypothe-
sis of the theorem, since we don’t care what happens when l = m), the first and fourth terms
vanish. The LHS can only be nonzero (which is what we want to show can’t happen) if at
least one of the remaining two terms on the RHS is nonzero. Due to the orthogonality, each
of them term is nonzero in at most one case:

• second term: l = m+ 2
• third term: l = m− 2

We’ll now show that they both = 0 even in the aforementioned special cases.

Case 1: l = m+ 2

In this case,

I(x) =
∑
abcd

[
Rabcd(x)

∫
SxM

habf cd dµSxM(v)

]

=

∫
SxM

[∑
abcd

Rabcdh
abf cd

]
dµSxM(v)

Applying an argument similar to the one used in Step 3 to show that B = 0 allows us to con-
clude that the integrand = 0 (Previously we appealed to the obvious symmetry of vavbvcqd
in its first two indices; here we appeal to the symmetry of hab in its two indices, as given in
Lemma 5.4(iii)
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Case 2: l = m− 2
This case is analogous to case 1.

■
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3.4.2 Proof of Lemma 5.3(ii)
Omitted
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3.4.3 Proof of Lemma 5.3(iii)
Omitted

31



3.5 Commutator Identities
Lemma 4.1 (Commutator identities).
(i) [XA,

v

∇] = −
h

∇A

(ii) [XA,
h

∇A] = R̃
v

∇+ FA

(iii)
h

divA
v

∇−
v

div
h

∇A = (d− 1)XA

(iv) [XA,
v

div] = −
h

divA

The first three are on C∞(SM,Cn), the last is on Zn

• Note: there’s a bit of subtlety masked by the notation. For example, consider the
expanded version of the commutator in (i): XA(

v

∇u) −
v

∇(XAu). Notice that the
first XA refers to the action of the geodesic vector field on Zn, whereas the second is
referring to the action on C∞(SM,Cn). So these are like symbolic equalities rather
than formal identities within an operator algebra (since each instance of XA lives in a
different algebra)

Proof Outline

1. Express X,
v

∇,
h

∇ in coordinates

Xu = vj · δju
v

∇u =
(
∂ku
)
· ∂xk

h

∇u =
[
δju−

(
vk · δku

)
· vj
]
· ∂xj
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2. Brackets of δ’s and ∂’s

[
δxj
, δxk

]
= −

(∑
m,l

)
Rm

jkl · yl · ∂ym

[
δxj
, ∂yk

]
=

(∑
l

)
Γl
jk · ∂yl[

∂yj , ∂yk
]
= 0

((
[
∂xj

, ∂xk

]
= 0))

((
[
∂xj

, ∂yk
]
= 0))

[δj, δk] = −

(∑
m,l

)
Rjklm · vl · ∂m

[δj, ∂k] =

(∑
l

)
Γl
jk · ∂l

[∂j, ∂k] = vj · ∂k − vk · ∂j[
∂j, v

k
]
= ∂kj − vj · vk[

δj, v
k
]
= −

(∑
l

)
Γk
jl · vl

[
δj, δ

k
]
=

(∑
l

)[
−gkl

(∑
pq

Rjlpq · vp · ∂q
)

+
(
∂xj

gkl · δl
)]

[
δj, ∂

k
]
= −

(∑
l

)
Γk
jl · ∂l

3. Adjoints of X,
v

∇,
h

∇ on Z - this is only used in proving the last identity

X∗ = −X(
v

∇
)∗

= −
v

div =
∑
j

∂j(
h

∇
)∗

= −
h

div =
∑
j

δj + Γj

4. Prove commutator identities
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Chapter 4

The Carleman Estimate

Comparison of estimates

Both estimates have the same form:
∞∑
m

e2τφl ∥ul∥2 ≤ C ·
∞∑

m+1

e2τφl ∥(Xu)l∥2

The table below compares hypotheses and conclusions.

Case 1 (Theorem 1.1/6.2) Case 2 (Theorem 1.2)
curvature negative + bdd away from 0 nonpositive

(i.e. ≤ −κ < 0) (i.e. ≤ 0)
req’s on M compact simple or Anosov

(both =⇒ compact)
φl log(l) l (i.e. linear)
τ,m can both take any vals ≥ 1 can only take sufficiently large vals

(thresholds are independent)
C

(dimM + 4)2

κτ

24

κe2τ

κ curvature bound ? (defined on p.33)
req’s on u C∞(SM); C∞

F (SM) (= polynomial);
u|∂SM ≡ 0 if M has bdy u|∂SM ≡ 0 if M has bdy
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4.1 Proof Outline
The second flowchart in Appendix A.2 demonstrates the structure of this part.

The Carleman estimate is obtained as a corollary – see the next section – to the follow-
ing “re-weighted Pestov identity”:

Theorem 6.1. Under the same conditions as Theorem 1.1/6.2, the following holds for
s > − 1/2 and m ∈ Z+:

∞∑
l=m

{
2l2s+1 l = m,m+ 1

(2s+ 1)(l − 1)2s l ≥ m+ 2

}
∥X−ul∥2 + κ

∞∑
l=m

l2s+2 ∥ul∥2 +
∞∑

l=m

l2s ∥Z(ul)∥2Z

≤ C
∞∑

l=m+1

l2s+2 ∥(Xu)l∥2

• See the discussion after the proof for values of the constant C

Proof: 4.4

The inequality in Theorem 6.1 is assembled as follows: from Proposition 5.1 (Single-
frequency Pestov identity), we pull out a collection of localized estimates:

Lemma 6.4 (“Localised Estimates”). Under the same conditions as Theorem 1.1/6.2,
the following holds for u ∈ Ωl:

αl−1 ∥X−u∥2 + κλl ∥u∥2 + ∥Z(u)∥2Z ≤ βl+1 ∥X+u∥2

Proof: 4.5

We then weight each one of the localized estimates (by the sequence {γl}) and add them
all up. This gives us the estimate of Proposition 6.6:

Proposition 6.6 (Ansatz for Carleman estimate). Under the same conditions as The-
orem 1.1/6.2, the following holds for functions of finite degree:
∞∑

l=m

{
αl−1γ

2
l l = m,m+ 1

(1− δl−1)(αl−1γ
2
l − βl−1γ

2
l−2) l ≥ m+ 2

}
∥X−ul∥2 + κ

∞∑
l=m

λlγ
2
l ∥ul∥

2 +
∞∑

l=m

γ2l ∥Z(U)∥
2
Z

≤
∞∑

l=m+1

(
1 +

1− δl
δl

·
βlγ

2
l−1

αlγ2l+1

)
αlγ

2
l+1βlγ

2
l−1

αlγ2l+1 − βlγ2l−1

∥(Xu)l∥2

• m is any integer ≥ 1
• {γl} is any sequence in R+ that satisfies αlγ

2
l+1 > βlγ

2
l−1 for l ≥ m+ 1

• {δl} is any sequence in (0, 1]
• u is a polynomial (smooth and finite degree)
• u|∂SM ≡ 0 if M has boundary
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Proof: 4.6

Remark: don’t think of Proposition 6.6 as a generalization of Theorem 6.1 (which sort
of implies that Theorem 6.1 is proven first), but rather as a first attempt at assembling
Theorem 6.1 – an ansatz. What appears prima facie as complications (the gobbledygook
of weights) is actually baked-in wiggle room. The philosophy here is: “let’s put something
together that has the same structure as our desired inequality, but leave ourselves a bunch
of wiggle room (in the form of the choice of gammas and deltas), and then figure out how
to chose gamma and delta to get us all the way there. From this point, there are two things
left to figure out: we need to choose the weights γl and δl, and then we also need to address
the convergence of the series in the case where u is not finite-degree.
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4.2 Proof of the Carleman Estimate from Theorem 6.1

Start with the inequality from Theorem 6.1; replace s by τ − 1:

∞∑
l=m

{
2l2τ−1 l = m,m+ 1

(2τ − 1)(l − 1)2τ−2 l ≥ m+ 2

}
∥X−ul∥2 + κ

∞∑
l=m

l2τ ∥ul∥2︸ ︷︷ ︸
desired LHS

+
∞∑

l=m

l2τ−2 ∥Z(ul)∥2Z

≤ C

∞∑
l=m+1

l2τ ∥(Xu)l∥2︸ ︷︷ ︸
desired RHS (up to constant)

Notice: the third term on the LHS is always positive regardless of τ , so it can dropped
without affecting the validity of the inequality. Moreover, recall that the above inequality
comes with the stipulation that s > − 1/2. That’s equivalent to τ > 1/2, which guarantees
that 2τ − 1 > 0, and so the first term is positive as well and it can also be dropped:

κ
∞∑

l=m

l2τ ∥ul∥2 ≤ C
∞∑

l=m+1

l2τ ∥(Xu)l∥2

Finally, we’ll address the constant. As noted after the proof of Theorem 6.1, we don’t
have a single value of C that works for all combinations of d and s. Case 2(b) is the
“annoying/problematic” one; the others yield a “clean” value for C. It turns out that we
can sidestep the problematic case altogether: in our application of the Carleman estimate
(in the proof of Theorem 1.4/9.1), we only ever take τ ≥ 1 ( ⇐⇒ s ≥ 0), so we can
forget that the present inequality also holds (with a different constant) for s ∈ (− 1/2, 0)

without consequence. Under this new circumstance, the value for the constant is (d+4)2

2τ−1

(unconditionally). Also, we’ll replace the denominator by just τ for simplicity. (Doing so is
legal because – still under the restriction that τ ≥ 1 – it only enlarges the constant.)

Finally, dividing the κ back onto the RHS and replacing the l2τ ’s gives the Carleman
estimate as stated in Theorem 1.1/6.2:

∞∑
l=m

e2τ log(l) ∥ul∥2 ≤
(d+ 4)2

κτ

∞∑
l=m+1

e2τ log(l) ∥(Xu)l∥2
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4.3 Choice of Weights
Summary

Case 1 (Theorem 1.1/6.2) Case 2 (Thm 1.2)
Case 1 γl := ls

δl ≡ 1/2
though even δl ≡ 1 would work

Case 2(a) ditto

Case 2(b) γl :=

{
ls l ≥ l0√
1
2
αl

βl
γl l < l0

δl ≡ 1/2
here δl ≡ 1 would not work

*Cases refer to those that arise in the proof of Theorem 6.1

Motivation/Intuition

Now that we have our ansatz Proposition 6.6 for the Carleman estimate, we need to “solve”
for the weight sequence {γl}. A good place to start our search is by analyzing the case d = 2.
In this case, the sequences {αl}, {βl}, {λl} take on a particularly simple form:

• αl = 2l + 2
• βl = 2l − 2
• λl = l2

Step 1:
The whole point of the weight sequence {γl} is to facilitate the absorption, so any sequence
that allows us to do so will work, regardless of what it does to the other terms in the
inequality of 6.6. Since they don’t factor into the absorption, drop the terms

∑∞ γ2l λl ∥ul∥
2

and
∑∞ γ2l ∥Z(ul)∥

2 (this makes the small side even smaller, so it’s allowed), take δl ≡ 1
(this achieves two effects: first, it greatly simplifies the weights on the RHS, and second, it
gives the tightest upper bound, which is the best case scenario for absorption; if it can’t be
done with δl ≡ 1, it can’t be done at all, since the part we want to absorb only gets larger).
Plugging in the values of the above sequences:

κ
∞∑

l=m

l2γ2l ∥ul∥
2 ≤ 2

∞∑
l=m+1

(l + 1)γ2l+1(l − 1)γ2l−1

(l + 1)γ2l+1 − (l − 1)γ2l−1

∥(Xu)l∥2

Notice that the RHS can be expressed in terms of the simple sequence rl := lγ2l (we also
express the LHS so that everything is in the same terms):

κ

∞∑
l=m

lrl ∥ul∥2 ≤ 2
∞∑

l=m+1

rl+1rl−1

rl+1 − rl−1

∥(Xu)l∥2
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Step 2:
Now we’re going to completely absorb the RHS into the LHS. Just like we did in Step 1 of
Theorem 1.4/9.1, we’re going to bound ∥(Xu)l∥2 in terms of u only:

∥(Xu)l∥ = ∥(X+u)l + (X−u)l∥
≤ ∥Xul−1∥+ ∥Xul+1∥

∥(Xu)l∥2 ≤ ∥Xul−1∥2 + ∥Xul+1∥2 + 2 ∥Xul−1∥ · ∥Xul+1∥
≤ 2

(
∥Xul−1∥2 + ∥Xul+1∥2

)
Since our u will always satisfy Xu+ Au = 0, we have ∥Xul∥ ≤ ∥A∥∞ · ∥ul∥. With this:

≤ 2 ∥A∥2∞︸ ︷︷ ︸
=:R

·
(
∥ul−1∥2 + ∥ul+1∥2

)

Note: They take R = 4 ∥A∥∞. Regardless of whether the constant is 2 or 4, I’m not
sure how you can get away with using ∥A∥ rather than ∥A∥2 in the previous step. I tried
to compute ∥A∥, which led me to realize that I have no idea what the ”standard” way to
norm a matrix of tangent/cotangent vectors is. I couldn’t find anything online, and a ques-
tion that I posted to MathOverflow didn’t receive any responses. This particular instance
is complicated by the fact that the connection form A doesn’t transform tensorially, but I
assume that the chosen way to norm it should still be independent of coordinates.

Note 2: I suspect that the choice to use 4 instead of 2 might have something to do with
making R/κ > 1, which is relevant later (see Step 5).

To absorb the RHS into the LHS, split it into two sums and re-index so that all u’s have the
subscript l. After absorbing, we have:

∞∑
l=m

{
κlrl − 2R rl+2rl

rl+2−rl
l = m,m+ 1

κlrl − 2R
(

rl+2rl
rl+2−rl

+ rlrl−2

rl−rl−2

)
l ≥ m+ 2

}
· ∥ul∥2 ≤ 0

In order to conclude that ∥ul∥2 = 0 ∀l, we need all coefficients to be positive. To make things
easier, we can replace the first two coefficients (i.e. those for l = m and m + 1) with ones
having the same form as the rest (i.e. those for l ≥ m + 2); doing so makes them smaller,
so if they’re still positive after the replacement, then we of course can conclude that the
originals are as well. So we want the sequence {rl} to satisfy the following condition:

2R

(
rl+2rl
rl+2 − rl

+
rlrl−2

rl − rl−2

)
≤ κlrl for l ≥ m
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Step 3:
Lets try and pull a simpler inequality out of the above. Notice that if we drop the first
summand above, we’ll have a relation between rl and rl−2, which essentially will give us a
recursive condition on the growth. (Dropping the second term and working with rl+2 and
rl gives the exact same thing after re-indexing.) So dropping the first term and rearranging
gives:

rl ≥
(
2R/κ + l

l

)
rl−2 for l ≥ m

For notational convenience, we let S := R/κ. By induction, we see that:

rm+2k ≥

[
k∏

j=1

m+ 2j + 2S

m+ 2j

]
︸ ︷︷ ︸

=: P

rm for k ≥ 0

Step 4:
The growth factor P is quite hard to work with, so we’d like to bound it by something
simpler. The simplest bound - I call it the naive bound - is to just replace each factor in the
numerator by the smallest and each factor in the denominator by the largest. This turns
out to be pretty useless (explained later - see Remark 1 in Step 6). Here’s how you might
stumble upon a better one: if you pick some a random pairs of (positive) whole numbers to
plug in for k and S and write out the whole product explicitly, you notice that the product
telescopes when S < k: the factors cancel with an offset of S, leaving the greatest S-many
factors in the numerator and the smallest S-many factors in the denominator. If we take
the naive bound on what’s left, we get:

P ≥
(
m+ 2k + 2

m+ 2S

)S

≥
(
m+ 2k

m+ 2S

)S

︸ ︷︷ ︸
=: Q

for m ≥ 1, k ≥ 0

(We drop the “+2” from the numerator for simplicity.) While the cancellation argument
only works for S ∈ {1, · · · , k − 1}, it turns out that the bound holds for any S ∈ [1,∞),
which can be seen on this interactive graph.

Step 5:
Now we need to investigate the value of R/κ. That it’s positive is trivial, but we also need it
to be ≥ 1 so that the bound from the previous step holds. Though I don’t know for certain,
I have two reasons to suspect that it is, which I’ll cover later. So assume that it is.

Step 6:
We have:

rm+2k ≥
(
m+ 2k

m+ 2S

)S

rm for m ≥ 1, k ≥ 0

Recall that the (m+ 2k)’s started out as l’s. Converting them back, we find:

rl ≥
1

(m+ 2S)S
rm · lS (for l ≥ m and having same parity as m)
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Remark 1: Now we’re in a position to see why the naive bound would not have been a
good choice in Step 4. It turns out that the naive bound is the same as Q with k and S
interchanged; Q puts l in the numerator, but the naive bound would have put it in the
denominator - hardly a growth condition at all.

Replacing rl by lγ2l and rearranging, the corresponding growth condition for γl is:

γl ≥
√
mγm

(m+ 2S)S/2︸ ︷︷ ︸
cm,S

·l
S−1
2 (for l ≥ m and having same parity as m)

Hence γl ≥ c · l
R/κ−1

2

Remark 2: Now I can cite my reasons for believing that R/κ > 1:
1. in the paper, they conclude that γl ≥ cls “for some sufficiently large s > 0”. Assuming

their s refers to R/κ−1
2

, then s > 0 ⇐⇒ R/κ > 1.
2. In [GPSU16] the following “related” (in the sense that it’s structurally similar to R/κ

and both the connection form – which appears in one – and the curvature form – which
appears in the other – encode the connection) quantity appears, which here I’ll refer
to as C:

2

(∥∥F E
∥∥
L∞

κ

)2

where F E is essentially the curvature form. The following appears as a hypothesis in
Lemma 4.2 (p.23): “assume m is so large that λm ≥ C”. Since λm = m(m + d − 2),
we have λm ≥ 1∀m, so the hypothesis would be redundant unless C > 1.

Conclusion:
So the point is that the absorption requires {γl} to grow at least polynomially (when talk-
ing about growth/complexity classes, ”polynomial” allows any positive exponent, including
those < 1). On the other hand, they can’t grow too quickly or else the terms

∑∞ γ2l λl ∥ul∥
2

and
∑∞ γ2l ∥Z(ul)∥

2 won’t converge. Luckily, they converge for any polynomial weights (see
Step 4 of the proof of 6.1 §??)

Let’s be clear with what we’ve done in this section. At the moment, what we’ve deter-
mined is that if there is a sequence {γl} that will allow us to do the absorption as we want
in the case d = 2, then that sequence would have to grow polynomially. However, we
haven’t yet shown that any such sequence does indeed work, even for 2 dimensions (let alone
higher dimensions); that’s the content of 4.4, the next section.
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4.4 Proof of Theorem 6.1

We’ll introduce some labels:

∞∑
l=m


αl−1γ

2
l l = m,m+ 1

(1− δl−1) (αl−1γ
2
l − βl−1γ

2
l−2)︸ ︷︷ ︸

=:A

l ≥ m+ 2

 ∥X−ul∥2 + κ
∞∑

l=m

λlγ
2
l ∥ul∥

2 +
∞∑

l=m

γ2l ∥Z(ul)∥
2
Z

≤
∞∑

l=m+1

1 +
1− δl
δl

·
βlγ

2
l−1

αlγ2l+1︸ ︷︷ ︸
=:B

 αlγ
2
l+1βlγ

2
l−1

αlγ2l+1 − βlγ2l−1︸ ︷︷ ︸
=:C

∥(Xu)l∥2

Proof outline

1. Show that A > 0 for s ≥ −1/2. This does double duty: it shows that our choice of
weights satisfies the growth condition, and it helps in pulling out the estimate.

2. Show that B ≤ 3, C ≤ (2+d/2)2

(2s+1)
l2s+2

3. Noting a few other simple estimates and Parting the Red Sea. Up to this point, we
have the estimate for functions of finite degree.

4. Justify why the estimate still holds for arbitrary (i.e. not necessarily finite-degree) u

The proof breaks down into three cases, based on the values of d and s:
• Case 1 - d = 2 (s can be anything)
• Case 2(a) - d ≥ 3, s ≥ 0
• Case 2(b) - d ≥ 3, 0 > s > −1/2

The first two cases are treated simultaneously, since they have the same proof. The last case
is quite finicky. Having said that, we can weaken the theorem by forgetting about case 2(b)
to no detriment: in using the theorem to prove the main Estimate (Thm 1.1), we assume
s ≥ 0 anyways.

Proof

Step 1:
Notice that the growth estimate is equivalent to A ≥ 0 Showing this does double duty,
because we need an estimate on A to estimate C.
First, rewrite αl, βl as follows:

αl = 2(l + 1) + (d− 2)(1− 1/l) +
(d− 2)2

l(l + d− 2)

βl = 2(l − 1) + (d− 2)(1− 1/l)

Letting ψp(l) := (l + 1)p − (l − 1)p, we then have:

A = 2ψ2s+1(l) + (d− 2)(1− 1/l)ψ2s(l) +
(d− 2)2

l(l + d− 2)
(l + 1)2s
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Case 1: When d = 2, the second and third terms vanish, so that A = 2ψ2s+1(l). Since ψ is
exactly the quantity in Lemma 6.8, we conclude that A ≤ 2(2s+ 1)l2s for s ≥ −1/2 (which
corresponds to p ≥ 0). Since we need strict inequality, we exclude the case s = −1/2, and
that’s where the requirement that s > −1/2 in the statement cones from.

Case 2(a): For d = 3, none of the terms vanish. The fact that the second term has p = 2s
instead of 2s+1 is why we have to break into two subcases: to estimate this term below, we
can only have s ≥ 0. But both terms reveal themselves to be positive, so the result still holds.

Case 2(b): Omitted

Step 2:
Now we’ll bound B and C. We start with B:

B =
(l − 1)

(
2 + d−2

l

)
· (l − 1)2s

(l + 1)
(
2 + (d−2)(l−1)

l(l+1)

)
· (l + 1)2s

=
2l2 + dl + (d− 2)

2l2 + dl − (2d− 2)
·
(
l − 1

l + 1

)2s+1

︸ ︷︷ ︸
≤1

To bound the first factor, consider it as a family of functions of l with d as a parameter.
Once you figure out the zeros and asymptotes, you can see that all the functions in the
family are decreasing – and bounded – for l ≥ 2. Plugging in l = 2, we get the following
family of bounds:

≤ 3 · d+ 2

d+ 10︸ ︷︷ ︸
≤1

This shows that B ≤ 3, as desired.

Next we bound C:

C =
αlβl

2(2s+ 1)
·
(
l2 − 1

l

)2s

For l ≥ 2, the second factor is bounded above by:{
l2s s ≥ 0

(3/4l)2s s ≤ 0

Which gives:

≤ (2l + d)(2l + d− 4)

2(2s+ 1)
·max{1, (3/4)2s}︸ ︷︷ ︸

≤ 2 for s > −1/2

l2s
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Cancel the 2’s, drop the −4 (which makes both factors in the numerator the same), and
factor out an l from each of them:

≤ (2 + d/l)2

2s+ 1
· l2s+2

Replacing the l in the numerator by its minimum value of 2 gives the bound.

Step 3:
Now we’ll “part the Red Sea”. We’ll pull our desired inequality out of the inequality of
Proposition 6.6 by decreasing all the weights on the smaller (R) side and increasing the
weights on the bigger (L) side. The decreases/increases are done using the bounds on A, B,
and C from steps 1 and 2 as well as the following two estimates:

αl ≥ 2(l + 1)

λl ≥ l2

Here we also fix δl ≡ 1/2. The changes are all very straightforward, so they’re not detailed
here. This completes the derivation of the inequality in the statement of the theorem, but
so far we only know it to hold for functions of finite degree.

Step 4:
We now need to show that all the series converge when u is infinite-degree. It’s a standard
fact that 1-dimensional – and, I think, multi-dimensional – Fourier coefficients of smooth
functions decay faster than any polynomial. Now, these results fall under harmonic analysis
on toruses, whereas we’re working on spheres. I’m assuming they know that the same holds
for spheres, though I wasn’t able to find anything about it online.

■

The value of the constant

• In cases 1 and 2(a), the value of C obtained is (d+4)2

2s+1

• The value is not optimal, for three reasons: the optimal occurs when δl ≡ 1, would
also depend on m, and moreover we estimated the value of ours up after fixing δl and
ignoring m.

• Remark 6.9 (pp.32/33) discusses the optimal constant in these cases. While we don’t
have an elementary expression for it, they show two things: first, that the optimal
constant is asymptotic (in s) to 1

2s+1
, and second that ours is hence at least asymptotic

to the optimal. By taking a larger value of s, we can make it as close as necessary to
the optimal value
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• They don’t even bother trying to give an elementary expression for the constant in
case 2(b) because it’s quite finicky, but they essentially encode the inequality with

the optimal value for this case, which is max{C,1/2
(d+4)2

2s+1
}

min{c,1} . C – which here represents a
different quantity – and c are defined at the top of p.32
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4.5 Proof of Lemma 6.4

This is a consequence of 5.1

Outline

1. Set A = 0 in the single-frequency Pestov identity 5.1
2. Bound the second term below
3. Rewrite the bound from step 2

Proof

Step 1:
Consider the single-frequency Pestov identity from 5.1:

αl−1

∥∥XA
−u
∥∥2 − (R̃ v

∇u,
v

∇u
)

Z
−
(
FA(u),

v

∇u
)

Z
+ ∥ZA(u)∥2Z = βl+1

∥∥XA
+u
∥∥2

When we set A = 0, the third term vanishes because F0 = 0 (by definition of FA). For the
other terms, A = 0 has the effect of just dropping A from the notation.

Step 2:
To compute the bound, it will help to emphasize that the two arguments of the inner product
are functions of θ

−
(
R̃θ

v

∇u,
v

∇|θu
)

Z
= −

(
Rx(

v

∇|θu, v)v,
v

∇|θu
)

Z

= −
∫
M

∫
SxM

〈
v

∇|θu, v, v,
v

∇|θu
〉

Nθ

dvdx

We can absorb the negative in front to switch the third and fourth slots of the integrand.
Also, we’ll omit the information about the integrals, since we don’t have to manipulate them
at all ((we’re only working with the integrand)). Now we have:

=

∫∫ 〈
v

∇|θu, v,
v

∇|θu, v
〉

Nθ︸ ︷︷ ︸
=:I(θ)

By Prop 4.3.1 in [dC06] (p.94, I(θ) =
∣∣∣∣ v∇|θu ∧ v

∣∣∣∣2︸ ︷︷ ︸
=

∣∣∣∣ v∇|θu
∣∣∣∣2

· K
(

v

∇|θu, v
)

︸ ︷︷ ︸
≤−κ by hypothesis

, which gives:

≤ −κ
∫∫ ∣∣∣∣ v∇|θu

∣∣∣∣2
= −κ

∥∥∥∥ v

∇u
∥∥∥∥2
Z
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Step 3:

−κ
∥∥∥∥ v

∇u
∥∥∥∥2
Z
= −κ

(
v

∇u,
v

∇u
)

Z

= −κ
(

v

∇
∗ v

∇u, u
)

L2(SM)

= −κ (−∆u, u)

= −κ (λlu, u)
= −κλl (u, u)
= −κλl ∥u∥2
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4.6 Proof of Proposition 6.6

Proposition 6.6 is a precursor to the Carleman Estimate. Essentially, we set up an esti-
mate that works for finite-degree functions, and then we vary the coefficients/weights in the
estimate to force it to hold for arbitrary functions as well.

Start with the single-frequency estimates from 6.4. The upper bound is hard to work
with; would prefer an upper bound in terms of ∥(Xu)l+1∥2 instead. Write the current upper
bound as the sum of our desired upper bound and an error term. We notice that part of
the error term can be absorbed into the LHS when we move it over. We’ll use this to our
advantage: rather than estimating away the entire error term, which would just introduce
more garbage for us to deal with, we estimate away only part of the error term: more
specifically, we use the ”ok” part of the error term to estimate away the rest - using the
x + 1/x trick. That way, we’re not introducing anything new. In place of the error term is
something that can still be entirely absorbed into the LHS.

Outline

1. Take the estimates from 6.4 and multiply them by the corresponding terms of a se-
quence {γ2l }. Turn the RHS into desired + error We’ll impose conditions on the
sequence in the course of the proof

2. estimate away the bad part of the error
3. sum up all the localised estimates and absorb
4. rigging - second bound on epsilon and condition on gamma
5. Nail down the allowable values of the ε’s
6. Take the limit

Proof

Step 1:
To begin, apply Lemma 6.4 to each component of u and multiply through by γ2l :

αl−1γ
2
l ∥X−ul∥2 + κλlγ

2
l ∥ul∥

2 + γ2l ∥Z(ul)∥
2 ≤ βl+1γ

2
l ∥X+ul∥2

Using the fact that (Xu)l+1 = X+ul + X−ul+2, we can express the RHS in terms of our
desired quantity. Rearrange, take norms, and expand to get our desired RHS + error:

∥X+ul∥2 = ∥(Xu)l+1 −X−ul+2∥2

= ∥(Xu)l+1∥2︸ ︷︷ ︸
desired RHS

−2Re ((Xu)l+1, X−ul+2)︸ ︷︷ ︸
“bad” part of the error

+ ∥X−ul+2∥2︸ ︷︷ ︸
“ok” part of the error

Step 2:
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We’ll now estimate the above expression in terms of only the two outer terms. Consider the
following, as a function of εl:

(1 + ε−1
l ) ∥(Xu)l+1∥2 + (1 + εl) ∥X−ul+2∥2

It has the form

(1 + ε−1)A+ (1 + ε)C

=A+ C + A/ε+ Cε

On the other hand, the thing we’re trying to estimate has the form A−2B+C. In order for
our estimate to work, we need to be able to choose ε so that A/ε + Cε ≥ −2B, regardless
of how large −2B is (it can be positive). Now, A/ε + Cε behaves just like x + 1/x, which
gets arbitrarily large in both directions on (0,∞), so we’re fine. To be specific, the allowable
values of ε are:

Case 1: −2B ≤ min
ε>0

A/ε+ Cε

In this case, any ε will work.

Case 2: −2B > min
ε>0

A/ε+ Cε

The minimum is 2
√
AC, which occurs at the value ε =

√
A/C. Solving for ε in the case

of equality gives B±
√
B2−AC
C

; letting these two numbers be q and Q, respectively, the values
that ε can take in this case are (0, q] ∪ [Q,∞).

Here’s where things get a little hairy: this is all fine and good as long as A, B, and C
are constants. But if you go back to where I introduced them, they actually depend on
u (they also depend on l, but that doesn’t introduce any complications, so we’ll continue
to suppress l for now). Hence the allowable values of ε actually depend on u. We want,
however, one value of ε that works for all u. These are:⋂

u∈Case 2

(0, q(u)] ∪ [Q(u),∞)

=

(
0, inf

u∈Case 2
q(u)

]
∪
[

sup
u∈Case 2

Q(u),∞
)

The obvious first question is, “Is the above set even nonempty?” We’ll address this question
in Step 5. For now, assume that some ε exists.

We now have:

αl−1γ
2
l ∥X−ul∥2+κλlγ2l ∥ul∥

2+γ2l ∥Z(ul)∥
2 ≤ βl+1γ

2
l (1+ε

−1
l ) ∥(Xu)l+1∥2+βl+1γ

2
l (1+εl) ∥X−ul+2∥2

Step 3:
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Summing up the estimates for all degrees m to N and reindexing the sums on the RHS so
that the indices inside norms are all l’s, we get something like:

N∑
l=m

al ∥X−ul∥2 +
N∑

l=m

bl ∥ul∥2 +
N∑

l=m

cl ∥Z(ul)∥2 ≤
N+1∑

l=m+1

dl ∥(Xu)l∥2 +
N+2∑

l=m+2

el ∥X−ul∥2

Now comes the point where we absorb: Notice that there’s an X− term on either side. We
want to subtract the one on the RHS from the one on the LHS and rig the a’s and e’s so that
the result is still positive for the indices that “overlap”. Notice, however, that the (N + 1)-
and (N + 2)-terms on the RHS don’t overlap with anything on the LHS, and they become
negative when we move them over. This isn’t as problematic as it may seem at first: recall
that we’re only focusing on u with finite degree right now. So as long as N ≥ deg(u), we’re
fine: those two pesky terms vanish on their own. We end up with:

N+2∑
l=m


al l = m,m+ 1

al − el l = m+ 2, . . . , N
−el l = N + 1, N + 2

·∥X−ul∥2+
N∑

l=m

bl ∥ul∥2+
N∑

l=m

cl ∥Z(ul)∥2 ≤
N+1∑

l=m+1

dl ∥(Xu)l∥2

Step 4:
As discussed, for this estimate to end up doing what we want, we need al − el ≥ 0. In terms
of the actual coefficients, this places the following restriction on the sequence of ε’s:

εl ≤
(
αl+1γ

2
l+2

βl+1γ2l

)
− 1︸ ︷︷ ︸

=:Ml

for l = m, · · · , N − 2

Because we’re going to end up taking N− > ∞, we’ll further impose that the above holds
for all l greater than m. A note on notation: notice that Ml depends on the sequence {γl};
when we wish to emphasize this dependence, we’ll writeMl(γ) rather thanMl({γl}) to avoid
anyy confusion caused by the l on the γ.

Vis-a-vis this bound, there are two things to consider:
1. We obviously need Ml > 0, and this places a condition on the sequence {γl}, which to

this point had no restrictions on it.
2. We need to ensure that it jives with the condition on ε from Step 2. This will be

addressed in step 5.
(1) It also places a restriction on the sequence {γl} places the following restriction on the
sequence of γ’s (it’s essentially a growth condition):

αlγ
2
l+1 > βlγ

2
l−1 for l ≥ m+ 1

Step 5:
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Now we come to the task of determining the allowable values of the ε’s. The following
intersection combines the restriction from Step 2 with the restriction from Step 5:

εl ∈ (0,Ml] ∩

{(
0, inf

u∈Case 2(l)
ql(u)

]
∪

[
sup

u∈Case 2(l)
Ql(u),∞

)}

When we use the inequality from the statement of the theorem to prove Theorem 6.1, we’ll
want to take εl =Ml ∀l, so we need to show that:

Ml ≤ inf
u∈Case 2(l)

ql(u) for l = m, · · · , N − 2

While we will be fixing {γl} when we apply the inequality in the proof of Theorem 6.1, the
statement of the present theorem allows {γl} to be arbitrary, so long as it satisfies the growth
condition. Hence we need to prove the above without knowing anything about {γl} other
than that it satisfies the growth condition. An equivalent way to state this is that we must
prove:

sup
γ satisfying the

growth condition

Ml(γ) ≤ inf
u∈Case 2(l)

ql(u) for l = m, · · · , N − 2

None of this is addressed in the paper, which to me is a major plothole, because I have no
idea how I would even begin to prove such a thing - or any idea why I should expect it to
be true.

To make things more compact, we’ll reparametrize the intervals (0,Ml] by (0, 1] as follows:
by replacing εl by δl+1Ml, where the δ’s can take any value in (0, 1] (the index is different on
the δ’s only so that ...), we don’t have to remember the allowable range of each εl – or even
that they depend on {γl} – because it’s encoded in the inequality; we just have to remember
the easy requirement that δl ∈ (0, 1] ∀l.

we need to make sure that they don’t contradict each other. Or, more accurately, we need
to make sure that it’s possible to choose the γ’s – which are as yet variable – in a way to
make the bound from the present step jive with the condition from Step 2 – which is fixed.
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Appendix A

Reference Materials

A.1 Notation
A note on how this list is organized: rather than doing it alphabetically, I decided to organize
it hierarchically. This, in my opinion, gives the added benefit of using this not only as a list
of notation, but also as a way of collecting up all the objects considered in the paper in a
way that the reader can use it to see how they all relate to each other.

Miscellaneous

⟨l⟩ - (1 + l2)1/2. This shorthand is called the Japanese angle bracket
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Geometric objects
M - Smooth manifold with boundary

d - the dimension of M
x - the general point of M
v - the general tangent vector of M ; based at x
φ - a coordinate patch on M

SM - sphere bundle of (M, g)
θ - general point of SM . That is, θ = (x; v)
ξ - the general tangent vector of SM ; based at θ
π - the bundle projection SM →M
∂+(SM) - inward-pointing unit tangent vectors on ∂M
∂−(SM) - outward-pointing unit tangent vectors on ∂M
∂0(SM) - the unit vectors that are tangent to ∂M

γθ - the geodesic in M determined by θ (that is, starting at x and going in the direction v)
τ(θ) - the time at which the geodesic γθ arrives at ∂M

ϕX
t - geodesic flow of M. We look at it as living on SM rather than the full TM
Kθ - the connection map coming from the Levi-Civita connection associated to the Sasaki

metric
A - an arbitrary attenuation for the ray transform (not necessarily linear)

a - a scalar attenuation (used in the ray transform on functions)
A - general connection (linear)
Φ - general Higgs field

Vector fields and other tensors

T - general (covariant) tensor field to which we apply the ray transform
T̃ - the function on SM extracted from T
X - geodesic vector field of (M, g). We conceptualize it as living on SM (i.e. it’s a section of

T (SM))
V - vertical vector field on SM
H - the horizontal vector field on SM that’s induced by the Sasaki metric
R - Riemann curvature of M. Written Rx[v1, v2](w)

R̃ - a field of operators on the bundle N coming from R. Defined R̃θ := Rx[−, v](v).
[Lee09] refers to this as the tidal operator (p.558)

∂j - essentially just ∂yj , but for functions defined on SM only
δxj

- ∂xj
− (
∑

k,l)Γ
l
jky

k∂yl
δj - essentially just δxj

, but for functions defined on SM only
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Function spaces
L2(SM,Cn) -

u - the general function in L2(SM,Cn)
ul - components of u w.r.t. the vertical spherical harmonics decomposition
m - the degree of finite-degree functions in L2(SM,Cn)

C∞(SM,Cn) -
C∞

F (SM,Cn) - (from [PS18]; I don’t use this notation) smooth functions of finite degree (i.e. polynomials
on SM)

Pm,P ′
m - homogeneous polynomials of degree m on TM,SM respectively

Hm(SM) - vertical spherical harmonics of degree m
λm - the eigenvalue corresponding to Hm(SM). It = m(m+ d− 2)

Ωm - smooth vertical spherical harmonics of degree m, for m ≥ 0. For convenience, we define
Ω−1 := {0}

Z - TM -valued functions on SM with certain properties
Z - the general function in Zn
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Inner Products
g - Riemannian metric on M

⟨−,−⟩ - alternative notation for g
⟨⟨−,−⟩⟩ - the Sasaki metric on SM
(−,−) - will be used for the inner products of both L2(SM,Cn) and Zn. In the text, we will

distinguish as follows: absence of a subscript indicates L2(SM,Cn), while the Zn

inner product will always have a subscript Z
(−,−)α - modified inner product on L2(SM,Cn), where α is a sequence of complex numbers. Note

that a Greek letter in the subscript automatically implies that this is an inner product
on L2(SM,Cn). Such an object is not defined on Zn
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Operators

— — Domain(s) Codomain(s) Action [PS18]

d inner derivative symmetric k-tensors symmetric (k − 1)-tensors

Ã general connection C∞(SM,Cn) C∞(SM,Cn) matrix multiplication p.17

R̃ Zn Zn p.11

X geodesic vector field C∞(SM,Cn) C∞(SM,Cn) X|θu = d
dt
|0u(ϕX

t (θ)) p.2

— — Zn Zn X|θZ = D
dt
|0Z(ϕX

t (θ)) p.11

X+ Ωm Ωm+1 p.11

X− Ωm Ωm−1 p.11

XA X + Ã C∞(SM,Cn) C∞(SM,Cn) p.17

∆ vertical Laplacian C∞(SM,Cn) C∞(SM,Cn)
v

div
v

∇

∇SM total derivative
v

∇ vertical gradient C∞(SM,Cn) Zn p.11

−
v

div adjoint of
v

∇ w.r.t (−,−)Z Zn C∞(SM,Cn)
h

∇ horizontal gradient C∞(SM,Cn) Zn p.11

−
h

div adjoint of
h

∇ w.r.t (−,−)Z Zn C∞(SM,Cn)
h

∇A

h

∇+
v

∇Ã C∞(SM,Cn) Zn p.17
h

divA
h

div +

〈
v

∇Ã, ·
〉

Zn C∞(SM,Cn) p.17

FA X
v

∇Ã−
h

∇Ã+ [Ã,
v

∇Ã] C∞(SM,Cn) Zn p.17

Z,ZA

v

div-free part of
h

∇Au C∞(SM,Cn) Zn p.18

P
v

∇X C∞(SM,Cn) Zn p.13
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Sequences of Weights

{αl} -
{

d− 1 l = 0
(2l + d− 2)

(
1 + 1

l+d−2

)
l ≥ 1

(p.18)

= 2(l + 1) + (d− 2)(1− 1/l) + (d−2)2

l(l+d−2)
(p. 30)

= 2l + d− d−2
l+d−2

(mine)

{βl} -
{

0 l = 0, 1
(2l + d− 2) (1− 1/l) l ≥ 2

(p.18)

= 2(l − 1) + (d− 2)(1− 1/l) for l ≥ 2 (p.30)
= 2l + d− 4− d−2

l
(mine)

{γl} - appears in Proposition 6.6; see 4.3 for choice in proving the Carleman estimate
{δl} - appears in Proposition 6.6; see 4.3 for choice in proving the Carleman estimate
{εl} - auxiliary sequence appearing in the proof of Proposition 6.6
{rl} - auxiliary sequence appearing in the derivation of the choice of weights (4.3); rl := lγ2l

The following table records the first few values of {αl} for various values of d and m:
d \ m 0 1 2 3 4 5 6 7 8 9 10
2 1 4 6 8 10 12 14 16 18 20 22
3 2 4 1⁄2 6 2⁄3 8 3⁄4 10 4⁄5 12 5⁄6 14 6⁄7 16 7⁄8 18 8⁄9 20 9⁄10 22 10⁄11

4 3 5 1⁄3 7 2⁄4 9 3⁄5 11 4⁄6 13 5⁄7 15 6⁄8 17 7⁄9 19 8⁄10 21 9⁄11 23 10⁄12

5 4 6 1⁄4 8 2⁄5 10 3⁄6 12 4⁄7 14 5⁄8 16 6⁄9 18 7⁄10 20 8⁄11 22 9⁄12 24 10⁄13

6 5 7 1⁄5 9 2⁄6 11 3⁄7 13 4⁄8 15 5⁄9 17 6⁄10 19 7⁄11 21 8⁄12 23 9⁄13 25 10⁄14

The following table records the first few values of {βl} for various values of d and m:
d \ m 0 1 2 3 4 5 6 7 8 9 10
2 0 0 2 4 6 8 10 12 14 16 18
3 0 0 2 1⁄2 4 2⁄3 6 3⁄4 8 4⁄5 10 5⁄6 12 6⁄7 14 7⁄8 16 8⁄9 18 9⁄10

4 0 0 3 5 1⁄3 7 2⁄4 9 3⁄5 11 4⁄6 13 5⁄7 15 6⁄8 17 7⁄9 19 8⁄10

5 0 0 3 1⁄2 6 8 1⁄4 10 2⁄5 12 3⁄6 14 4⁄7 16 5⁄8 18 6⁄9 20 7⁄10

6 0 0 4 6 2⁄3 9 11 1⁄5 13 2⁄6 15 3⁄7 17 4⁄8 19 5⁄9 21 6⁄10

• the prototype for the α’s is x− d
x+d

, and the prototype for the β’s is x− d
x

• both the α’s and β’s are asymptotically linear (with slope always 2) for all values of d
• as d increases, the α’s become more linear, whereas the β’s become less linear (i.e they

take longer to converge)
• the other thing that occurs as d increases is that all the values of both sequences

increase at the same rate
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A.2 Overview/Roadmap (Flowcharts)
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A.3 Theorems
page page in [PS18]

Reformulation 12 -
Theorem 1.1/6.2 Carleman estimate 12 3/24
Theorem 1.4/9.1 12 5/40
Theorem 1.5/9.2 Main result 13 6/41
Theorem GPSU16− 5.2 Vanishing criterion 62 -
Theorem 6.1 35 23
Lemma 6.4 Localized estimates 35 25
Proposition 6.6 35 26
Lemma 6.8 Combinatorial lemma 63 28
Proposition 5.1 Single-frequency Pestov identity 23 20
Lemma 5.2 Frequency-localized Pestov identity 24 21
Lemma 5.3 25 21
Lemma 4.1 Commutator identities 32 17
Lemma 4.2 Pestov with general connection 17
Lemma 4.3 Pestov with general connection in terms of X± 18
Proposition 4.4 Pestov with unitary connection in terms of X± 20

Theorem (Reformulation). The ray transform on M is s-injective ⇐⇒ for all polyno-
mials f , we have ∂+uf ≡ 0 =⇒ uf is polynomial.

Theorem 1.1/6.2 (The Carleman Estimate). On a compact Riemannian manifold
with negative sectional curvature ≤ −κ < 0 for some κ > 0 (compact =⇒ bounded away
from 0), the following holds for any τ ≥ 1 and m ∈ Z+:

∞∑
l=m

e2τφl ∥ul∥2 ≤
(d+ 4)2

κτ

∞∑
l=m+1

e2τφl ∥(Xu)l∥2

where:
• u ∈ C∞(SM), with u|∂SM ≡ 0 if M has boundary
• X is the geodesic vector field (acting as a differential operator)
• l as subscript refers to decomp w.r.t. vertical spherical harmonics
• ∥·∥ is the norm on L2(SM)
• φl = log(l)
• d = dim(M)

Theorem 1.4/9.1.
(i) Under the same hypotheses as Theorem 1.1/6.2, it’s known that smooth solutions to

the attenuated transport equation Xu+A(u) = −f (with boundary condition ∂u ≡ 0)
have finite degree when:
• f itself is smooth and has finite degree (i.e. f ∈ C∞

F (SM,Cn))

61



• A is any operator on C∞(SM,Cn) that satisfies ∥(A(u))l∥ ≤ R · (∥ul−l∥+ ∥ul∥+
∥ul+1∥) for l ≥ some l0 ≥ 2

(ii) deg(f) ≤ max{l0 − 1, deg(f), 2Cd,κR} − 1
• Cd,κ is defined through the course of the proof

Theorem 1.5/9.2 (Main theorem of PS18).
(i) Under the following conditions, uA+Φ

f is a polynomial of degree ≤ deg(f)− 1:
• M satisfies the hypotheses of Theorem 1.1/6.2 and is non-trapping
• either ∂M is strictly convex or supp(f) ⊂ SM◦

• f is a polynomial
• f ∈ kerIA+Φ

(ii) In the case that f is homogeneous (such as when f = T̃ ), uf is also homogeneous, and
its degree is exactly deg(f)− 1

Theorem GPSU16-5.2 (“Vanishing Criterion”). If u ∈ ΩE
m - where E is a Hermitian

bundle over SM with a (Hermitian) connection - satisfies the following two conditions, then,
in fact, u vanishes identically on all of SM .

• u vanishes on the preimage (under πSM) of some hypersurface Γ ⊂M
• u is killed by X+ := (∇E

X)+

Theorem 6.1. Under the same conditions as Theorem 1.1/6.2, the following holds for
s > − 1/2 and m ∈ Z+:

∞∑
l=m

{
2l2s+1 l = m,m+ 1

(2s+ 1)(l − 1)2s l ≥ m+ 2

}
∥X−ul∥2 + κ

∞∑
l=m

l2s+2 ∥ul∥2 +
∞∑

l=m

l2s ∥Z(ul)∥2Z

≤ C
∞∑

l=m+1

l2s+2 ∥(Xu)l∥2

• See the discussion after the proof for values of the constant C

Lemma 6.4 (“Localised Estimates”). Under the conditions of Theorem 1.1/6.2, the
following holds for l ≥ 0:

αl−1 ∥X−u∥2 + κλl ∥u∥2 + ∥Z(u)∥2 ≤ βl+1 ∥X+u∥2

• u ∈ Ωl

Proposition 6.6 (Ansatz for Carleman estimate). Under the conditions of Theo-
rem 1.1/6.2, the following holds for functions of finite degree:
∞∑

l=m

{
αl−1γ

2
l l = m,m+ 1

(1− δl−1)(αl−1γ
2
l − βl−1γ

2
l−2) l ≥ m+ 2

}
∥X−ul∥2 + κ

∞∑
l=m

λlγ
2
l ∥ul∥

2 +
∞∑

l=m

γ2l ∥Z(U)∥
2
Z

≤
∞∑

l=m+1

(
1 +

1− δl
δl

·
βlγ

2
l−1

αlγ2l+1

)
αlγ

2
l+1βlγ

2
l−1

αlγ2l+1 − βlγ2l−1

∥(Xu)l∥2
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• m is any integer ≥ 1
• {γl} is any sequence in R+ that satisfies αlγ

2
l+1 > βlγ

2
l−1 for l ≥ m+ 1

• {δl} is any sequence in (0, 1]
• u is a polynomial (smooth and finite degree)
• u|∂SM ≡ 0 if M has boundary
Remark: the infinitude sums is somewhat artificial, since they always reduce to finite

sums when you plug in u.
Lemma 6.8 (“Combinatorial Lemma”).
(i) (l + 1)p − (l − 1)p ≥ plp−1 for p ≥ 0, l ≥ 1
(ii) (l + 1)p − (l − 1)p ≥ −ηp(l0)lp−1 for p ∈ (−1, 0), l ≥ l0 ≥ 2
• They use the letter s, which conflicts with the s in the statement and proof of Thm

6.1. I’ve switched to p to avoid the conflict
• Proof omitted (no insight to be gained)

Proposition 5.1 (Single-Frequency Pestov Identity).

αl−1

∥∥XA
−u
∥∥2 − (R̃ v

∇u,
v

∇u
)

Z
−
(
FA(u),

v

∇u
)

Z
+ ∥ZA(u)∥2Z = βl+1

∥∥XA
+u
∥∥2

• M compact; with or without boundary
• A a unitary connection
• l ≥ 0
• u ∈ Ωl

• u|∂SM ≡ 0 if M has boundary
• αl, βl as defined in XXX

Lemma 5.2 (Frequency-Localised Pestov Identity). For u ∈ C∞(SM) and unitary
connection A we have:

∥∥XA
−u
∥∥2
α (L2(SM))

−
(
R̃

v

∇u,
v

∇u
)

Z
−
(
FAu,

v

∇u
)

Z
+ ∥ZA(u)∥2Z

=
∞∑
l=0

[
αl−1

∥∥XA
−ul
∥∥2 − (R̃ v

∇ul,
v

∇ul
)

Z
−
(
FA(ul),

v

∇ul
)

Z
+ ∥ZA(ul)∥2Z

]
=

∞∑
l=0

βl+1

∥∥XA
+ul
∥∥2

=
∥∥XA

+u
∥∥2
β (L2(SM))

• Note: the statement of Lemma 5.2 doesn’t actually say what they want it to say; as
it’s written there, they subract the RHS’s from the LHS’s within each summand, so
that all summands reduce to 0 (as does the RHS). Hence their equation reads

∑
0 = 0,

which doesn’t say anything meaningful. The proper way to write it out is to have a
four-way equality as presented here
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Lemma 5.3. For u ∈ C∞(SM) and unitary connection A we have:

(i)
(
R̃

v

∇ul,
v

∇um
)

Z
= 0

(ii)
(
FAul,

v

∇um
)

Z
= 0

(iii) (ZA(ul), ZA(um))Z = 0

Lemma 4.1 (Commutator identities).
(i) [XA,

v

∇] = −
h

∇A

(ii) [XA,
h

∇A] = R̃
v

∇+ FA

(iii)
h

divA
v

∇−
v

div
h

∇A = (d− 1)XA

(iv) [XA,
v

div] = −
h

divA

The first three are on C∞(SM,Cn), the last is on Zn

Lemma 4.2 (Pestov for general connection A).(
v

∇XAu,
v

∇X−A∗
u

)
Z
=

(
XA

v

∇u,X−A∗ v

∇u
)

Z
−
(
R̃

v

∇u,
v

∇u
)

Z
−
(
FAu,

v

∇u
)

Z
+(d−1)

(
XAu,X−A∗)

• They note that the non-unitarity of A means a loss of symmetry in the Pestov identity,
which is seen here

Lemma 4.3 (Pestov in terms of XA
± , n.n. unitary).(

XA
−u,X

−A∗

− u
)
α
−
(
R̃

v

∇u,
v

∇u
)

Z
−
(
FAu,

v

∇u
)

Z
+ (ZA(u), Z−A∗(u))Z =

(
XA

+u,X
−A∗

+ u
)
β

Proposition 4.4 (Pestov Identity in terms of XA
± , A unitary).

∥∥XA
−u
∥∥2
α
−
(
R̃

v

∇u,
v

∇u
)

Z
−
(
FAu,

v

∇u
)

Z
+ ∥ZA(u)∥2Z =

∥∥XA
+u
∥∥2
β
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Appendix B

Technical Preliminaries

B.1 “Polynomials” on TM

Definition. A polynomial function on TM is a function on TM whose expression in
coordinates is polynomial in the coordinates of v with coefficients in C∞(M).

1. The definition doesn’t depend on choice of coordinates, since coordinates change lin-
early on tangent spaces; replacing each variable with a linear combination of the others
is still a polynomial

2. Notice that we don’t ask for the expression to be polynomial in the coordinates of
x, however; that property could very well hold in one chart and not in another. So
basically “polynomial” on TM means “polynomial in all the variables for which it
makes sense to talk about such a thing”.

Notice that the lift (as defined in Section 1.1) of any (covariant) tensor is a polynomial.
For example, say M is 3-dimensional and we have a 3-tensor T = T113(x) · dx1 ⊗ dx1 ⊗ dx3;
the corresponding polynomial function is T̃ (θ) = T113(x) · v21v3. Moreover, any polynomial
can be obtained from lifting a tensor: just declare its coefficients to be the components of a
tensor (in the same basis).

• in a corresponding tensor/polynomial pair, the polynomial is homogeneous iff the ten-
sor is homogeneous.

• we’re going to restrict everything to be homogeneous because inhomogeneous tensors
don’t really come up in pure geometry (more like algebraic topology)

• the lifting operation is not injective in general
• but it is injective on symmetric tensors: given a homogeneous polynomial f on SM ,

we can “compress” it back to a symmetric tensor on M , denoted by f tens. I like to
refer to (·)tens as tensorization.

• example: the general 2-tensor on a 2-dimensional manifold lifts to the polynomial
T11v

2
1+(T12+T21)v1v2+T22v

2
2; hence the homogeneous polynomial f(x)v21+g(x)v1v2+

h(x)v22 corresponds to the symmetric tensor T11 = f, T12 = T21 =
1
2
g, T22 = h
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B.2 “Polynomials” on SM

• a polynomial on SM is just the restriction to SM of a polynomial on TM
• being polynomial on SM is equivalent to being finite-degree (w.r.t. the basis of vertical

spherical harmonics) and smooth
• just like on Rn, Ωm are exactly the restrictions to SM of vertical solid harmonics

– homogeneous polynomials on TM that are harmonic on each tangent space
• The tensors that lift to vertical solid harmonics under ·̃ are called trace-free, and are

denoted by Θm. This is addressed in [Sha94] and [GPSU16]. They use λ for the lifting
map when restricted to this domain [PSU15].
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B.3 Decomposition of X into X+ and X−

Theorem (Decomposition of X):
(i) For u ∈ Ωm, Xu ∈ Ωm−1 ⊕ Ωm+1 (Prop GK80b-3.2, p.164; stated in PS18 at bottom

of p.11)
(ii) X+ is injective on each Ωm (Thm GPSU16-5.2, p. 30; stated in PS18 on p.16)
(iii) X∗

+ = −X− (Lemma PSU15-3.1, p.14)
(iv) Ωm = X+Ωm−1 ⊕ kerX− (Lemma PSU15-3.2, p.14)
(v) In terms of tensors, the components of X act as follows (PSU15, p.15):

X+
∼=lift projΘm+1

d

X− ∼=lift cm,d · δ, where δ = −d∗

Remarks:
• all of these hold for for XA as well
• (i) is in stark contrast with a fact we’re very familiar with: in the familiar setting of

Rn, we know that taking any directional derivative of a polynomial just knocks the
degree down by 1. Here, though, the theorem tells us that when we take a particular
directional derivative, we also get some terms of greater degree

• [GK80] proves (1) by mostly algebraic considerations, so it doesn’t really give any
insight into what feature of the geometry causes the higher-degree terms to emerge

• note in particular that for m = 0, we have X = X+
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B.4 The function space Z and the Bundle N

To be able to formulate an energy identity for
v

∇X, we need norms on the domain and
codomain. The domain is C∞(SM) – for which we have a norm (namely, the L2(SM)
norm), but we need to nail down a codomain and associated norm. The codomain will be
the following function space:

Definition. The function space Z consists of smooth functions Z : SM → TM that satisfy
the following properties:
(i) Z(x, v) ∈ TxM
(ii) Z(x, v) ⊥ v

To put an inner product on Z, we’ll realize it as sections of a bundle N , and use the
bundle metric to obtain our inner product.

Construction of N

1. Over each point of SxM put a copy of TxM (i.e. right now all fibres over SxM are
identical)

2. Chop each one down to a (different) hyperplane. The copy over θ = (x, v) ∈ SxM gets
chopped down to v⊥ ⊂ TxM . I call this bundle Npre.

3. Notice that this inherits a natural bundle metric:〈
ξ, η
〉
Npre

θ

=
〈
ξ, η
〉
TxM

4. Complexify (see C.1.1) to get N . (At this point, its a complex vector bundle over a
smooth manifold.)

5. Since the metric on Npre is a smooth family of real inner products, it too, can be
complexified. This gives a Hermitian metric on N.

Definition. Under the identification Z ∼= Γ(N), we equip Z with an inner product as
follows:

(Z1, Z2)Z :=

∫
SM

⟨Z1|θ, Z2|θ⟩Nθ
dµL(θ)

where µL is the Liouville metric on SM (see C.2.10)
• we use round brackets for this inner product; that’s to keep it distinct from Riemannian

metrics, for which we usually use angled brackets.
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Appendix C

Background Knowledge

C.1 Algebra

C.1.1 Complexification of Vector Spaces
Definition. Given a vector space V over R, its complexification V C consists of:

• underlying set: V ⊗R C (looking at C as a 2D vector space over R)
• multiplication by a complex scalar: α(v ⊗ β) := v ⊗ αβ

The dimension of V C is:
• as a real vector space – 2 dim(V )
• as a complex vector space – dim(V )

As a real vector space, V C ∼= V ⊕ V , and we write it as V + iV in the same way that
we write C as R + iR. Under this identification, the scalar multiplication can be written
(a+ bi)(v + iw) = (av − bw) + i(bv + aw)

There’s a natural way to realize V as a (real) subspace of V C (considered here as a real
vector space): the element corresponding to v ∈ V is just v ⊗ 1

If V has an inner product, that too can be complexified, so that entire inner product spaces
can be complexified.

Reference: Wikipedia, Complexification
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C.2 Geometry

C.2.1 Riemannian Manifolds with Boundary
The analysis of geodesics in manifolds with boundary turns out to be a very thorny subject,
and it seems like not much has been written on the topic. The papers that I found are:

• Geodesics in Riemannian manifolds-with-boundary, Alexander and Alexander, 1981
• The Riemann obstacle problem by Alexander, Berg, Bishop, 1985
• Cauchy uniqueness in the Riemannian obstacle problem, Alexander, Berg, Bishop, 1986
• Geodesics in Euclidean space with analytic obstacle, Albrecht and Berg, 1991

Starting from the definition that geodesics are locally distance-minimizing, we lose smooth-
ness right away; such curves can go back and forth between the boundary and the interior
with a hard corner at each transition. So in fact the best we can hope for in general is C1.
Moreover, we lose uniqueness.

Typically, when we work with geodesics (in the non-boundary case), we use the PDE
∇γ̇ γ̇ = 0, but the appropriate PDE that reflects the situation in the boundary case is not so
nice:

∇γ̇ γ̇ =

{
0 on M◦

k(x)ν on ∂M (ν is the outward unit normal)

Moreover, the PDE must be solved in H2, since the LHS won’t even be defined at all points
of the solution curve.

In the context of the problem we’re dealing with in this report, this state of affairs raises
the following questions:

• does/should τ(θ) refer to the time at which γθ arrives at the boundary, or the time at
which it “exits” the boundary (i.e. ceases to exist in the manifold)?

• if geodesics aren’t unique, how do we decide which one to follow in computing the ray
transform?

The good news is that all of these questions are circumvented by imposing strict convexity,
which is a hypothesis for CDRM’s.

Definition. A manifold with boundary has strictly convex boundary if the second
fundamental form is positive definite.

Theorem. If a manifold has strictly convex boundary, then geodesics only intersect the
boundary transversely. In particular, geodesics don’t travel along the boundary, nor can
they “kiss” the boundary as they travel.

Proof. On p.112 of [Sha94], it’s recorded that ∂+τ+, ∂−τ− ≡ 0 (∂+, ∂− are defined opposite
to ours, so the +’s and −’s appear “crossed”). Now, ∂+SM ∩ ∂−SM = ∂0SM , which is
the set of all boundary directions, and on this set τ+, τ− vanish simultaneously. This means
that any “geodesic” starting at a boundary point exits the manifold exactly at that point
going both forwards and backwards, so it reduces to a point and hence it’s not a geodesic at
all. ■
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Remarks

• This isn’t so much a proof as it is a justification for how I know the theorem to be
true. I’m assuming that the proof of the facts about τ± involves showing that the
“geodesics” along the boundary are just points, and so the reasoning in my “proof” is
circular. I find it interesting that the results about τ± are just slipped in the text as if
they’re trivial, because I think there’s a little more going on than meets the eye.

• Here’s an easy example that offers a heuristic proof: compute the second fundamental
forms of M = B̄2 and M = R2 \ B2, both of which have boundary S1; you’ll find
that the former is identically 1 – “the boundary is as convex as possible” – and the
later is identically −1 – “as far from convex as possible”. Notice that in the former
case, geodesics behave exactly as we’re used to, but in the latter case the shortest
path between two points on opposite sides of the removed disc will include an arc of
S1. This kind of bridges the gap between our intuitive understanding of convexity and
the notion of convexity defined via the second fundamental form. So it feels like if
a manifold is convex (according to the second fundamental form) near its boundary,
then geodesics should behave similar to those in B̄2 (which adheres to our intuitive
understanding of convexity and is also convex according to the second fundamental
form)

71



C.2.2 Ricci Calculus
Placeholder
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C.2.3 Solenoidal/Potential Decomposition of Tensor Fields
Definition. For symmetric (covariant) tensor fields on compact manifolds with boundary,
we make the following definitions:
(i) A field T is called solenoidal if δT ≡ 0 (−δ is the adjoint of the inner derivative d)
(ii) A field T is called potential if it’s the inner derivative of another symmetric tensor

that vanishes on the boundary. That is, T = dS for S with S|∂M ≡ 0

Theorem. Every symmetric (covariant) tensor field on compact manifold with boundary
decomposes uniquely into solenoidal and potential components.

The proof is long and complex, so I’ll just make some remarks about it:
• One can consider the analogous result for tensors on Rn as a “baby version”. This is

the content of §2.6 in [Sha94]. The proof in this case is much simpler; its done using
the Fourier transform.

• The proof of the “full version” is all PDE’s/hard analysis. It’s the content of §3.3 in
[Sha94]

• moreover, the proof the full version rests on a “theorem on normal solvabitiy” from
a paper that’s only available in Russian (Solubility of boundary problems for general
elliptic systems by an L.R. Volevic, 1965) for existence and uniqueness

Reference: [Sha94], §2.4 (pp.39-42), §3.3 (pp.87-92)
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C.2.4 Bundle-valued Forms
References:

• [Lee09] §8.5 (pp.370-373)
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C.2.5 Connections
Part of the reason why I think the subject of connections was so hard to learn is that most
of the things that you read are geared towards smooth vector bundles, where there are a
whole bunch of interrelated notions at play (by contrast, in more general settings, fewer and
fewer of these notions are even a thing):

• (linear) Ehresmann connection
• horizontal bundle
• horizontal lift
• parallel transport
• connection map
• Koszul connection
• covariant derivative

Moreover, any one determines all the others, so the lines between them are are bit blurred,
and I think every author has their own unique concept/philosophy of connections, differen-
tiated by how and in what measure these components feature.

The resources that really helped me to get a feeling for connections were:
• [Gol08] - this is pretty much exactly what I would’ve written here if it didn’t already

exist
• [Lee09], ch.12
• Wikipedia, Connection (vector bundle)
• Wikipedia, Ehresmann connection
• Wikipedia, Connection (mathematics)
• The page “Category:Connection (mathematics)” on Wikipedia contains links to many

more articles

Notation used in this section

• E – vector bundle over M with total space E
• β – basis/frame field (local): β = {e1, · · · , er}
• σ – section of E (local); σ =

∑
sβ iei

• [σ]β – coordinate vector of σ w.r.t. the basis β: [σ]β =

 sβ 1

...
sβ r


• Ω – E-valued form; Ω =

∑
ei ⊗ ωβ i

• [Ω]β – coordinate vector of Ω w.r.t. basis β: [Ω]β =

 ωβ 1

...
ωβ r


Koszul Connection

This type of connection is designed specifically for smooth vector bundles. It can either
be formulated as a map from sections to bundle-valued 1-forms Γ(E) → Γ (T ∗M ⊗ E) or
as a taking a vector field and section and returning a section X(M) × Γ(E) → Γ(E) with
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specified properties in either case. From my reading, it doesn’t seem like there’s a consistent
conceptual distinction between the terms “Koszul connection” and “covariant derivative”,
though Husemoller (p.284) defines a covariant derivative as map taking in a vector field and
producing an endomorphism on sections: X(M) → End (Γ(E))

Connection form (of a Koszul connection)

The connection form is a matrix A of 1-forms that encodes the action of the connection.
This matrix is only defined in coordinates and it changes depending on the basis chosen. Its
entries are defined by ∇ej =

∑
ei ⊗ Aβ i

j. The fundamental identity here is ∇E = d + A,
although this is best thought of as a shorthand, with the proper interpretation being:[

∇Eσ
]
β
= d(M) [σ]β + Aβ · [σ]β

where:
• d is the exterior derivative (in contrast to the rest of this report, where it’s the inner

derivative) and it acts coordinate-wise
• the dot represents matrix multiplication

Basically, this allows us to compute the action of the connection in terms of two things we
know how to do easily: exterior differentiation and matrix multiplication. Note: this iden-
tity only holds on 0-forms (i.e. sections of the bundle). For (bundle-valued) forms of higher
degree, it’s a bit more complicated; see “Covariant exterior derivative” below.

Change-of-basis

If the two basis fields are related by γ = β · P , then the expression of the connection
form in the new basis is:

Aγ = P−1 · dP + P−1 · Aβ · P

Curvature form (of a Koszul connection)

The curvature form is a matrix of 2-forms that encodes the curvature of the connection. It’s
defined as F E := d Aβ + Aβ ∧ Aβ for any β (it turns out to be independent of coordinates).
It’s often summarized by dropping β, hence: F E = dA + A ∧ A. In this expression, d is
again the exterior derivative, acting entry-wise, and the wedge represents regular matrix
multiplication where the product between entries is the wedge product.

Covariant exterior derivative

The covariant exterior derivative is the operator dE := d(M) + A. (just like the identity
previously, this definition is also properly interpreted in coordinates:

[
dEΩ

]
β
= d(M) [Ω]β +

Aβ ∧ [Ω]β.) In contrast with the regular exterior derivative, the square of the covariant
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exterior derivative dE is not necessarily 0. In fact,
(
dE
)2

= F ∧ [−]:(
dE
)2
σ =

(
d+ Aβ

) (
dσ + Aβ σ

)
= d2σ + d

(
Aβ ∧ σ

)
+ Aβ ∧ dσ + Aβ ∧

(
Aβ ∧ σ

)
= 0 + d Aβ ∧ σ − Aβ ∧ dσ + Aβ ∧ σ +

(
Aβ ∧ Aβ

)
∧ σ

=
(
d Aβ

)
∧ σ +

(
Aβ ∧ Aβ

)
∧ σ

=
(
d Aβ + Aβ ∧ Aβ

)
∧ σ

= F ∧ σ

The relationship between the connection and the covariant exterior derivative on forms
of general degree is dE = cdegreeAlt∇. Notice that since “alternationization” isn’t injective
on forms of degree > 1, this can’t be used to compute the action of the connection on such
forms as it could for sections.

Connector/Connection map

To motivate the existence of the connection map, consider this: the primary purpose of con-
nections on smooth vector bundles is to furnish a notion of covariant derivative for sections.
The ”first” notion of derivative - the differential/tangent map, takes values in TE, whereas
we’d like it to take values in the same space as the original function (that space being E).
The connection map exists to do just that: K is a map from TE to the bundle E, and the
exact way that it does so is chosen so that the induced differentiation operator is covariant.

There are various ways of defining it depending on what notion of connection you start
with. If you start with an Ehresmann connection (which is just a declaration of horizontal
bundle), then the connection map takes a vector, projects it onto the vertical bundle (along
the horizontal bundle), and then maps the projection down into E via the canonical isomor-
phism. To give a taste of how this gives a covariant derivative: when defining a covariant
derivative from an Ehresmann connection, the idea is that we have decided that any sections
whose derivative is horizontal are the ones we’ll consider “constant” (parallel). Say you define
the covariant derivative as the tangent map followed by the connection map. The tangent
map gives you the velocity vector field of the section; say it’s horizontal. When you apply
the connection map, all the horizontal vectors get projected to the zero vector in the vertical
section, which obviously gets brought down to the zero section in E. So what this shows is
that with this definition of covariant derivative, sections that we declared as“constant” do
have derivative 0. This way of defining the connection map is found in [Lee09]

[Pat99] does case where you start with Koszul connection or jump straight in with an
“axiomatic” covariant derivative. His presentation only covers the particular case where E
is the tangent bundle, but it does generalize verbatim by just replacing certain instances of
“TM” by “E”.

References

• [Lee09], ch. 12
• [Gol08]
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C.2.6 The Riemann Curvature Tensor
Theorem (Symmetries of R):
(i) Rijkl = −Rjikl (anti-symmetry in first two indices)
(ii) Rsskl = 0 (corollary of previous)
(iii) Rijkl = −Rijlk (anti-symmetry in last two indices)
(iv) Rijss = 0 (corollary of previous)
(v) Rijkl = −Rklij

(vi) Rijks +Rjkis +Rkijs = 0 (First Bianchi Identity)
• It doesn’t have to be the last index held constant it’s true anytime you hold one

index fixed and cyclically permute the other three

References:
• [dC06], Ch.4 (p.98)
• Wikipedia, Riemann curvature tensor
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C.2.7 Geodesic Vector Field
Reference: [Pat99]
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C.2.8 “Vertical” and “Horizontal”
The terms “vertical” and “horizontal” come from the theory of smooth fibre bundles. A
smooth fibre bundle is specified by four pieces of data: The base space M , the total space
E, the fibre F , and the projection π : E →M .

Of all the objects with “vertical” or “horizontal” in their name, the first one that gets
defined is the vertical bundle. This is the collection of vectors in TE that are tangent to
the fibres. Denoted V E. Notice that it’s a second-order bundle: that is, it doesn’t consist
of elements of the bundle E, but rather elements of the tangent bundle over E.

Once V E is defined, it’s possible to talk about horizontal bundles, which are defined in
reference to the vertical bundle. Notice the plural: there isn’t just one. A sub-bundle of TE
is horizontal if each fibre is complementary to the vertical bundle. That is, Ex = Hx ⊕ Vx.

In practice, however, we usually have a way of declaring a canonical horizontal bundle:
in essence, that’s exactly what connections do. In particular, we have a canonical horizontal
bundle on (the tangent bundle of) Riemannian manifolds, because the metric on M induces
a metric on TM (the Sasaki metric), which in turn induces a connection on TTM (the
Levi-Civita connection).

Other objects:
• vertical/horizontal vector field is a vector field on E that consists only of vectors

in the vertical/horizontal bundle

• the vertical derivative and horizontal derivative of a smooth function
v

∇u,
h

∇u are
the components of the gradient ∇u with respect to the decomposition TE = V E⊕HE

Some facts about the vertical and horizontal bundles over a *vector* bundle
(with connection)

• V E = ker dπE
• HE = kerK (the connection map)
• There’s a natural isomorphism-along-πE from V E → E. It’s just identification of
TeEp

∼= Ep.
• dπE restricts to an isomorphism-along-πE from HE → E
• K restricts to an isomorphism-along-πTM from V E → E
• (dπE,K) : TE → E × TM is an isomorphism along (πE, πTM)
• In the case that M is a Riemannian manifold and E = TM (with the Sasaki metric),

the isomorphisms are isometries (simply because the Sasaki metric is defined to make
that happen)

References:

• [Pat99], §1.3.1 (pp.11-13)
• [Lee09], pp.511-512, 518, 520
• Wikipedia, Vertical and horizontal bundles
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C.2.9 Sasaki Metric
The Sasaki metric is a natural metric on the tangent bundle – in our case, restricted to the
sphere bundle – of a Riemannian manifold, induced by the metric on the base manifold.
Whereas the notations g and ⟨−,−⟩ are used for the metric on M , the notations ĝ and
⟨⟨−,−⟩⟩ are used for the metric on TM .

Since the vertical and horizontal bundles are each isomorphic (along πTM to TM – the
vertical bundle via the connection map K and the horizontal bundle via dπTM , it’s natural
to metrize them so that the isomorphisms become isometries (which is done by pulling the
metric on TM back by the corresponding isomorphism). The Sasaki metric is the sum of
these two metrics. In symbols:〈〈

ξ, η
〉〉

θ
:=
〈
dθπ(ξ

h), dθπ(η
h)
〉
x
+
〈
Kθ(ξ

v),Kθ(η
v)
〉
x

Note: since the kernels of dπ and K are exactly the co-kernel of the other, there’s no
“double-counting”. Also, note that this definition makes the vertical and horizontal bundles
mutually orthogonal.

References

• [Pat99], p.13
• Wikipedia, Sasaki metric
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C.2.10 Liouville Measure on SM

The Liouville measure arises from the canonical contact form.

Definition:
(i) The contact form on the tangent bundle of a Riemannian manifold is:

αθ(ξ) := ⟨⟨ξ,X|θ⟩⟩

(ii) The Liouville measure on SM is

µL(E) :=

∫
E

α ∧ (dα)∧(d−1)

Proposition. It turns out that the form used to define the Liouville metric is just a
multiple of the volume form on SM that comes from the Sasaki metric:

α ∧ (dα)∧(d−1) = ±(d− 1)volSM

Hence the Liouville volume of any set is just d− 1 times its “intrinsic” volume
• Note: the LHS is defined on all of TM , while the RHS is only defined on SM

Reference: [Pat99], §1.3.3 (pp.15-18)
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C.3 PDE’s

C.3.1 Transport Equation
The transport equation is a first order PDE, and so it can be solved by the method of char-
acteristics.

Reference: Evans, §3.2 (pp.96-114)
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C.4 Harmonic Analysis

C.4.1 Generalities
Using the eigenvalues of the Laplacian on the given space as an orthonormal basis for L2.
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C.4.2 Spherical Harmonics
Classical theory

Spherical harmonics can be thought of in several ways.
• they are not, as the name suggests, harmonic functions on the sphere
• they are, however, eigenfunctions for the Laplace-Beltrami operator on Sn.
• they arise as the angular parts of separated solutions to the Laplace equation on Rn

• there’s no closed-form expression; they are most easily expressed in terms of “associ-
ated Legendre polynomials”, which are themselves expressed in terms of the (basic)
Legendre polynomials, which are themselves expressed recursively

• they can also be characterized as the restriction of homogeneous, harmonic (on Rn+1)
polynomials – called (regular) solid harmonics – to the sphere, which is where the
name comes from.

• in fact, restriction is a bijection from homogeneous, harmonic polynomials on Rn+1 to
the eigenspaces of the spherical Laplacian. The inverse is “extension by homogeneity”

Homogeneous polynomials of a given degree can be decomposed as follows:

Pm =

⌊m/2⌋⊕
k=0

rkAm−2k

P ′
m =

⌊m/2⌋⊕
k=0

Hm−2k

where (using notation of [SW71]):
• Pm - homogeneous polynomials of degree m on Rn

• P ′
m - restrictions to Sn−1 (my notation)

• Aj - harmonic homogeneous polynomials on Rn (of degree j) ((solid harmonics))
• Hj - spherical harmonics of degree j – these are the restrictions of Aj to Sn−1, so we

can think of Hj = A ′
j

Bases (real version; not normalized)

m Yl,m
−3 y(3x2 − y2)
−2 xy xyz
−1 y yz y(4z2 − x2 − y2)
0 1 z 2z2 − x2 − y2 z(2z2 − 3x2 − 3y2)
1 x xz x(4z2 − x2 − y2)
2 x2 − y2 z(x2 − y2)
3 x(x2 − 3y2)
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Examples

x2 = −1
6
Y20 +

1
2
Y22︸ ︷︷ ︸

∈A2

+r2 · 1
3
Y00︸︷︷︸
∈A0

= 2
3
x2 − 1

3
y2 − 1

3
z2 + r2 · 1

3

x3 = −3
20
Y31 +

1
4
Y33︸ ︷︷ ︸

∈A3

+r2 · 3
5
Y11︸︷︷︸
∈A1

= 3
20
x3 − 3

5
xy2 − 3

5
xz2 + 1

4
x2 + r2 · 3

5
x

Spherical harmonics are useful in investigating the Fourier transform on Rn; while the con-
nection is irrelevant for the present paper, info on how they are used can be found in [SW71]
Ch.4.

On sphere bundles

Lemma 5.4 (Vertical derivatives of vertical spherical harmonics). Consider a ver-
tical spherical harmonic u ∈ Ωm. ∂j : C∞(SM) → C∞(SM) is a modified version of the
directional derivative operator ∂yj : C∞(TM) → C∞(TM) (see A.1, Vector fields and other
tensors). We have:
(i) ∂j[u] ∈ Ωm+1 ⊕ Ωm−1, where the Ωm+1-part is given by −mvju.
(ii) Denote the Ωm−1-part by hj. For any i, j, we have vihj ∈ Ωm ⊕ Ωm−2

(iii) The Ωm−2-part of vihj is symmetric in the sense that vihj and vjhi have the same
Ωm−2-part.

The Ωm−2 part of vihj is denoted hij, and the Ωm-part is denoted fij. For easy reference, we
record the expansions here:

∂j[u] = −mvj + hj

vihj = hij + fij

hij = hji

All of this still holds if the indices are raised
• used in the proof of Lemma 5.3(i)

Lemma (Decomposition of L2(SM) into vertical spherical harmonics).

L2(SM) =
⊕
N

Hm(SM)

In the course of proving Lemma 4.3, we find an expression that encodes the eigenvalues
of the vertical Laplacian in terms of the dimension of the manifold (p.19):

λl (1− 1/l)

(
1 +

1

l + d− 2

)
= λl − (d− 1)
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References:

• [Gar11]
• [Shu01] §22
• [SW71] Ch IV.2 to approx. p.141
• [GK80] §2,3 to approx. p. 164
• [PSU15] p.15
• Wikipedia, Spherical harmonics
• Wikipedia, Table of spherical harmonics
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C.5 Measure Theory

C.5.1 Fubini’s Theorem on Bundles
Placeholder
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C.5.2 Disintegration
Reference: Wikipedia, Disintegration theorem
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